Probabilistic Modeling for Multi Systems Microarray Experiments

Peter Sykacek Richard Clarkson

Department of Pathology University of Cambridge

Statistical Test Based Approach

Inflar	nmator	y Med	iator	or Endothelial			Death
Pos.	Affy Id.	p-value		Pos.	Affy Id.	p-value	•
				1	875.g.at	3.58e-39)
15	583.s.at	1.76e-30		2	867.s.at	2.72e-38	;
16	1006.at	1.51e-29			•••		
17	37388.at	3.93e-28		10	40490.at	8.74e-19)
				11	1006.at	1.10e-18	3
25	1052.s.at	6.61e-20		12	874.at	2.48e-18	3
26	875.g.at	5.65e-19					

27

38430.at

2.32e-18

Statistical Test Based Approach

Inflammatory Mediator				Endothelial Cell De			
Pos.	Affy Id.	p-value		Pos.	Affy Id.	p-value	
				1	875.g.at	3.58e-39	
15	583.s.at	1.76e-30		2	867.s.at	2.72e-38	
16	1006.at	1.51e-29					
17	37388.at	3.93e-28		10	40490.at	8.74e-19	
				11	1006.at	1.10e-18	
25	1052.s.at	6.61e-20		12	874.at	2.48e-18	
26	875.g.at	5.65e-19					

Combined Result

Pattern Matching – > No principled Ranking!

38430.at

2.32e-18

875.g.at, 1006.at,

27

Probabilistic Approach

Thomas Bayes (1701 - 1763) Learning from data based on a decision theoretic framework

BBSRC Exploiting Genomics Workshop, Sykacek & Clarkson, 2004 – p.3/

Probabilistic Approach

Thomas Bayes (1701 - 1763) Learning from data based on a decision theoretic framework

 $p(G|\mathcal{D}) = \frac{p(\mathcal{D}|G)p(G)}{p(\mathcal{D})}$ First consequence: we must revise beliefs according to Bayes theorem

Probabilistic Approach

Thomas Bayes (1701 - 1763) Learning from data based on a decision theoretic framework

consequence: First cording to Bayes theorem pected utilities

 $\alpha_{opt} = \operatorname{argmax}_{\alpha} < u(\alpha) >$, where $\langle u(\alpha) \rangle = \int_{G} u(\alpha, G) p(G|\mathcal{D}) dG.$ we Second consequence: Demust revise beliefs ac- cisions by maximising ex-

Probabilistic Gene Ranking

Model Type II Apoptosis in the Mouse Mammary Gland

Probabilistic Gene Ranking

Model Type II Apoptosis in the Mouse Mammary Gland

Latent variable probit GLM.

if
$$G = \begin{cases} 1 : s_{1,n} \sim 1 + x_n \\ 0 : s_{1,n} \sim 1 \end{cases}$$

 $s_{1,n}$ is a one dimensional Gaussian random variable with mean $\boldsymbol{\beta}_1^T \boldsymbol{x}_n$ and precision 1.

Probabilistic Gene Ranking

Model Type II Apoptosis in the Mouse Mammary Gland

Latent variable probit GLM.

if
$$G = \begin{cases} 1 : s_{1,n} \sim 1 + x_n \\ 0 : s_{1,n} \sim 1 \end{cases}$$

 $s_{1,n}$ is a one dimensional Gaussian random variable with mean $\beta_1^T x_n$ and precision 1.

As a rank measure, we infer $P(G|\mathcal{D}_1)$, the posterior probability of genes being differentially expressed.

jump 2 TOC

Combined System Analysis

Include Information about Endothelial Cell Death

Model 0 hrs. vs. 24 hrs. as latent variable Probit GLM. Calculate $P(\mathcal{D}_2|G)$, the marginal likelihood.

Bayes theorem gives a *principled* measure for ranking

$$P(G|\mathcal{D}_1, \mathcal{D}_2) = \frac{P(G|\mathcal{D}_1)p(\mathcal{D}_2|G)}{p(\mathcal{D}_2|\mathcal{D}_1)}$$

Combining Systems

Combined Result

Gene Symbol	$P(G \mathcal{D}_1,\mathcal{D}_2)$
TRIP6	1.00
PSMC2	1.00
PRDX4	1.00
BTG3	1.00
SCARB2	1.00
ZSWIM3	1.00
CD63	1.00
PDK4	1.00
GSTP1	1.00
TMSB10	1.00

Conclusion

- Lists of p-values are not capable of combining information from multi system microarray experiments.
- Probabilistic gene ranking provides an alternative to listing p-values.
- Extension to multi systems experiments is easily obtained via Bayes theorem.
- A combined analysis of two experiments demonstrates the feasibility of the proposed approach.

Table of Contents

- Multi Systems Analysis: Current Practise
- Motivation of Probabilistic Concepts
- Probabilistic Gene Ranking
- Extension to Multi Systems
- Combining Systems
- Combined Results
- Conclusion