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Talk Overview

» Motivation of Probabilistic Concepts
« BCI, current practice & shortcomings
- Adaptive BCI

« A Note on AR modelling

 GLM based Classification

» Probabilistic Kalman Filter

« Cognitive Issues

« Computer Simulations

» Conclusion
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Probabilistic Motivations

Thomas Bayes (1701 - 1763)
Learning from data using &
framework
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Probabilistic Motivations

Thomas Bayes (1701 - 1763)
Learning from data using &
framework

First consequence: we
must revise beliefs ac-
cording to Bayes theorem
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Probabilistic Motivations

Thomas Bayes (1701 - 1763)
Learning from data using &
framework

. where

< ula) >= [ u(o,z)p(z|D)da.

First consequence: w&econd consequence: D

must revise beliefs aceisions by maximising ex
cording to Bayes theorenpected utilities
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Brain Computer Interface
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Computer Is controlledirectly by cortical activity.
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Classification of BCIs

Cognitive events — > high spatial
and temporal resolution; highly inv

Neural actvity sivel; allows 2-d control of artifici
limb.
— > low spatial anc

Scalp EEG ntracranial EEG~ temporal resolution; no permanent
terference with patient; slow! at mc
voluntary control - involuntary events (P300) 20 bit per minute and task.
(mostly motor tasks)

— > focus on BClI’s based on scalp recordings.
— > low bit rates; last resort if no other communi
tion possible
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BCI with almost no adaptation

° L. A. Farwell and E. Donchin- >
User intention is embedded within a sequence
symbols. The correct symbol leads to “surpris
and triggers a §00.

o : N. Birbaumer etal. ~ >
threshold slow cortical potentials; J.R. Wolpaw
etal.,— > threshold moving average in an
appropriate pass band e;grhythm.
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BCI & static pattern recognition

° of EEG “waveforms” (e.g.
low pass filtered time series; spectral
representation)

° implicitly

assuming stationarity.

Technical setup changes during operation?
(e.g. electrolyte changes impedance)
User learns from feedback?
User shows fatigue?
Assuming stationarity

— >

jump 2 TOC Probabilistic Methods in BCI Research, Peter Sykacek, 2004/2



Our Approach

° refers to a brain computer interfa
(BCI) which is built arounc

« Two stage approach: extract from EEG
and predict of cognitive states.

» Feature extraction by AR-models
 Adaptive classification by

Probabilities— > optimal bit rate

Real time requirement > easy to compute

jump 2 TOC Probabilistic Methods in BCI Research, Peter Sykacek, 2008/2



Autoregressive (AR) modelling

Parameterise by reflection coefficients

T
r.,.€m

Pm —
r!r,

Fishers z-transform by stability argument>

GLM
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Reflection Coefficients

p

ylt] = =) amylt —m] + €lt], with

m=1
a,,. m-th order AR coefficienty|t|: a sample of EEG time
seriesg|t]: sample of white noise.

We extract o, from an EEG segment,,:
(om|Vn) 1 1 { om)? |, with
m|Fn — €x ———=\Pm — Pm ;
AL 27 P 252 2 :
L= (pm)’
m.p. valuej,, = ——=—" and variance” = n
P P =i N —1)

and use to represeny,,.
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A GLM classifier

] 1 _
¢, = T,
| p(Tn;wy)
= W
P(y,|lw,w,, x,) = : , with

1+ exp((2yn — 1)n,)

¢,,. projection into nonlinear feature spageg; response variab!
(cognitive state)w andw,,: model coefficients. conditioning o
w,, we have likelihood (data of siz¥):

p(Dy|w) = HP Un|W, 2,),
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Kalman filter tracking

Probabillistic view of adaptive inference > state
space formulation of a first order Markov process.

p(wn—l)
p(w,|w,_ 1, \I) fortimesn > 1

p(Yn|xn, wy,) for timesn > 1, where

p(w,_1), Gaussian “prior” at time, — 1.

p(w,|w,_1, A\I), Gaussian “state noise” with mean
w,,_1 and precisiomr.

p(y,|x,, w,), observation noise model.

If linear and Gaussianr > Kalman filter.
Here logit link and nonlinear non Gaussian.
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Probabilistic Kalman Filter

observation n
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Probabilistic Kalman Filter

observation n

get ) right (may regard /\ as
learning rate)
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Probabilistic Kalman Filter

observation n

get ) right (may regard /\ as
learning rate)
Non linear and non
Gaussiansome eqns.
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Probabilistic Kalman Filter

window sz. 1

window sz. 5
X - window sz. 10
re window sz. 15
le 1 window sz. 20

« >
{

| Ay r’yvﬁh
W

window sz. 1
window sz. 5
x - window sz. 10
window sz. 15
window sz. 20

observation n

lllustration of < XA > and “in-
get ) right (may regard /\ as stantaneous” generalization error f
learning rate) B. D. Ripley’s synthetic data with ar

Non linear and non tificial non-stationarity (swap label
Gaussiansome eqns. after sample 500).
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Cognitive Issues

Original task setting:

rest EEG, math task and imagined movem
8 young and healthy subjects; 12 repetition:

each task for about 8 seconds

Modified task setting:

spatial imagination, auditory imagination, I

and right imagined movement; 10 young &

healthy subjects; 10 repetitions for about

Augmented 10-20 positions at T4, P4 (right
seconds

tempero-parietal for spatial and auditory tasks),

C3’, C3” (left motor area for right motor im-Data ReCOrding:

agery) and C4’, C4” (right motor area for left m&EG band pass filtered (0.1 Hz - 100 Hz) &

tor imagery) sampled at 384 Hz, 12 Bit resolution.
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Computer Simulations

loayele:

Extract3 reflection coefficients per second EE(
and channel. Predict probability of state and
update parameters.

Comparison with equivalent static classifier. H
of entire experiment- > training data.

We measure on
Independent test data and check for statistical
significance using Mc. Nemar'’s test (a test for
paired experiments).

Estimate BCl'’s (channel capacity).
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Generalisation Accuracy

Experiment 1:

Generalization results

Cognitive task

vkf VSI Py
rest/move, no feedback 069 | 061 | < 0.01
rest/move, feedback 0.71 | 0.70 0.39

move/math, no feedback | 0.69 | 0.62 | < 0.01
move/math, feedback 0.64 | 0.60 | <« 0.01

Experiment 2:

» Generalization results
Cognitive task _
vkf VSi P .
navigation/auditory 0.86 | 0.85 0.02
navigation/movement 0.80 | 0.80 0.31
auditory/movement 0.78 | 0.76 | <« 0.01
navig./audit./move 0.75 | 0.73 | < 0.01
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CDF over KL divergence

rest/move no feedback rest/move feedback move/math no feedback move/math feedback
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Empirical cdf. over KL di-

empirical cdf
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navigation/auditory navigation/movement auditory/movement  navig./audit./move, 3 class pOSterlorS .

dotted line — > static
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method, solid line— > vari-
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ational Kalman filter.

o
[N

KL divergences of vkf are

larger.

Measures BCl’s channel capacity
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Communication Bandwidth

bit ratesrp,, [bit/s]
task vkf VSi P

rest/move nofb.| 0.18 0.10 < 0.01
rest/move fb. 0.18 0.13 < 0.01
move/math no fb.| 0.18 0.11 < 0.01
move/math fb. 0.15 0.10 < 0.01
nav./aud./move | 0.55 0.49 < 0.01
audit./move 0.38 0.35 < 0.01
navig./move 0.32 0.28 < 0.01
navig./audit. 0.37 0.34 < 0.01
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Conclusion

loayele:

We propose a truly adaptive BCI which we infe
using a novel algorithm based on variational
Bayes.

An empirical comparison using
and show that the proposed
method improves over static classification.

We thus suggest that in order to achiewve
BCI’s should be based on concepts of
adaptive learning.

Since all calculations can be done i :
the IS a promising
technique for a fully adaptive BCI.
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A simple idea:

the world isoneprobabilistic model.

» Applications often require structure:
a part and g
° treat both parts separately

and thus regard features as sufficient statistic
the data— > Features are deterministic
variables.

° treat such hierarchical settings
~— > Feature extraction

IS a
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Bayes’ Consistent Models




Bayes’ Consistent Models

requires
to integrate over:! un-
known variables, includ-
INg ©., vy, I, and [, that
represent a ;
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Bayes’ Consistent Models

Probabilistic sensor fusion

—*—  P(2) - latent feautures
P(2) — conditioning
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Precision of p((pa|Xa) on logarithmic scale

requires
to integrate over:! un-
known variables, includbecisions depend o
INg ©., vy, I, and [, that and may
represent a .~ thus change.
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Time Series Classification

ROC Curves

Navig. vs. Aud.

0.5

a1
1 — specifity

Navig. vs. Aud.

Bayes
cond.

O 0.20.40.6 0.8

PapolP@ Pt

loayele:

Left vs. Right Spindle

0.5

a1
1 — specifity

0.5

a1
1 — specifity

Left vs. Right

Bayes
cond.

O 0.20.490.6 0.8

PapolP@ Pt
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Synthetic

0.5

a1
1 — specifity

Synthetic

1.5 _
PapolP@ Pt




More Results
Expected feature values

cond. Spindle cond. Synthetic cond. Navig. vs. Aud.

oNbdooer
OFNOAD

—A1.5 —0.5 —A1.5 — A
dirm. 1 dim. 2 dirm. 1

Bayves Spindle Bayves Synthetic Baves Navig. vs. Aud.

-5
.43
-3
2
i N
o

Correct classifications Wrong classifications

o.2 o.a _ - o.2 o.a
Deaponem Do aponem
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Variational Kalman Filter

The logarithmic model evidence for a window of siXeis

log(p(Dx)) = log [ ﬂl[ [ pewaarpa)

p(wy|wy—1, A\I) P(yn|wn, ¢n)dwndwn—1}p(A|&7 ﬁ)dk)
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Variational Kalman Filter

The logarithmic model evidence for a window of siXeis

log(p(Dx)) = log [ ﬂl[ [ pewaarpa)

p(wy|wy—1, A\I) P(yn|wn, ¢n)dwndwn_1}p(>\|a, ﬁ)dk)

Plug in distributions and integrate over,,

log(p(Dn)) = 10g< A ﬂl{ /wn(%)—g

x  exp(—0.5(w, — w,_1)" (wp — Wy 1,
X dwn]
. P

o Ale=D) exp(—ﬁ)\)d)\)

Windowed KF (Rauch Tung Striebel smoother!)
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Lower Bounds

T
log(P(yYn|@p, wn)) > R ;)%wn — log(2) — log(cosh(%n))

B tanh(&2) (<¢§wn>2§2)
A€, 2 "

back to vkf
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Lower Bounds

o T
log(P(yn|@pp, wn)) > -2 ;)%wn — log(2) —log(cosh(%n))
B tanh(&2) <¢an>2 e
A€, 2 n
d 1

—0.5log |A Y, + A7

1V

—log \ — §log\VA;1 + 1|

(A —v)tr(vI + A,) 70,

DO | — DD

back to vkf
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Lower Bounds

2yn T 1 Cbgwn fn
08 (P(yal B w,) > — 00" Pt 1op(9)  log(cos($)
2
tanh(%) ([ ppw, | 2
A€, 2 n
S1 o,y d 1 1
—0.5log|A, -, + A I > 51()%)\_510%‘”\71 + 1|
1
— 5()\ —v)tr(vl + A,) 71,

—0.5(wy, — Wp1)" (AL + AT (wy — W) >

—0.5(wy, —Wp_1) (AL, + v D) w, —Wp_1)

—0.5(\ — v)(wy — Wp_1)T (WAL, + 1) (w,, — Wp_1)

back to vkf
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