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ABSTRACT tissue culture can give simple results, analysisndividual expe-

Motivation Biological assays are often carried out on tissues that rimentsusing multicellular tissues provides a blurred view of the
contain many cell lineages and active pathways. Microarray data molecular mechanisms operating in the tissue. This is chlog¢he
produced using such material therefore reflect superimpositions of superimposition of biological processes in, and betweeutiphe
biological processes. Analysing such data for shared gene function cell types. Here we show that a combined analysis of celliogilt
by means of well matched assays may help to provide a better focus and whole tissue microarray experiments &rared gene func-

on specific cell types and processes. The identification of genes that tion reveals informative common details in the differensteyns.

behave similarly in different biological systems also has the potential If the assays are well-matched, correspondingly more femlis
to reveal new insights into preserved biological mechanisms. answers are made available. Previous approaches for shased
Results In this paper we propose a hierarchical Bayesian model allo- lyses have been through meta-analysis of gene lists (‘éarad,

wing integrated analysis of several microarray data sets for shared 2005; DeCondeet al, 2006). In addition, recently (Huttenhower
gene function. Each transcript is associated with an indicator variable et al, 2006) have proposed a Bayesian network for integrated ana-

that selects whether binary class labels are predicted from expres- lysis of microarray data, which combines pairwise corietet of
sion values or by a classifier which is common to all transcripts. Each expression patterns.
indicator selects the component models for all involved data sets Our approach to inferringhared gene functios a fully Bayesian

simultaneously. A quantitative measure of shared gene function is assessment of whether we can establish, across experjraeata-
tionship between binary biological classifications (e.gitant vs.
wild type) and gene expression measurements. Using gemesexp

) . sion values as regressors, we model individual predictprsrbbit
advantages of. this Bayesian approach over a. standard mgthod. A link regression(Spanet al, 2002; Leeet al, 2003). Like (Liet al.,
shared analysis of matched microarray experiments covering a) a 2002; Leeet al, 2003), we use a Bayesian generalised linear model
cycle of mouse mammary gland development and b) the process of  (GLM). However we consider additional aspects: to provideae

obtained by inferring a probability measure over these indicators.
Through experiments on synthetic data we illustrate potential

endothelial cell apoptosis is proposed as a biological gold standard. precise focus on specific molecular biological processaesana-
Several useful sanity checks are introduced during data analysis and lysis combines information from heterogeneous sourcesh sis
we confirm the prior biological belief that shared apoptosis events whole tissues, with well-matched cultured cells. Such gor@gch
occur in both systems. We conclude that a Bayesian analysis for sha- also has the potential to allow data from a new assay to be ieomb

red gene function has the potential to reveal new biological insights, ned in a principled way with pre-existing data. This ince=aboth
unobtainable by other means. the statistical power and cost-effectiveness of experisadio allow

Availability An online supplement and MatLab code are available at CalCUIatlon.Of probability measures reliably, we compadividual
http://www.sykacek.net/research.html#mcabf. genes aga!nst a refgrence mloldel.‘ We sugge.st use (.)f a r@‘erenc
which predicts biological classifications according tapprobabi-
Contact peter@sykacek.net lities which are estimated from the class frequencies irtréiaing
data. This reference model does not use information fronaaie
rays and must clearly be outperformed by functionally intgtr
1 INTRODUCTION genes. The sensitivity of the results to subjectively chdsgper-
Robust methods for microarray data analysis are important f parameters is minimised by following (Bae & Mallick, 2004)ca
advancing biological research, for example allowing mareus-  using hierarchical priors. Our first experiment is a simokausing
sed drug design and better assessment of pathogenicityg@al, ~ Synthetic data and compares the Bayesian approach withgesim
2006; Daveet al, 2006). Many approaches are available for the Meta analysis. We then apply the model to the shared analf/sis
analysis of single experiments, including methods basedtati- two timecourse experiments: 1) a cycle of growth and regresa

. . . o . mammary glandsn vivo (Clarksonet al,, 2004) together with 2)
stical testing (Tusheet al, 2001; Pan, 2002; Reinet al, 2003; an assay of programmed endothelial cell death investigateitro

Wernischet al, 2003), Bayesian automatic relevance determina-jonnsonet al, 2004). Apoptosis of endothelial cells is known to

tion (ARD) (Li et al., 2002), Bayesian variable selection (el  occur during the mammary gland cycle and may play an impbrtan

2003; Bae & Mallick, 2004) and model selection (Li & Yang, 200 role in this process (Matsumott al, 1992; Djonovet al, 2001).

While experiments on relatively homogenous cells linesvgran Computer simulations support this prior biological belipfovide
high predictive accuracy and confirm the strategy introduuere.
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2 METHODS

The following discussion assumes that biological sampieswailable with
both microarray gene expression measurements and a knoauy laiassifi-
cation. In such situations, the importance of individuaiegcan be assessed
by Bayesian model criticism (Bernardo & Smith, 1994). Sanépproaches
have previously been used by (tial, 2002; Leeet al., 2003), who applied
Bayesian variable selection to obtain a measure of genertamu®. Assu-
ming an overall number of’ genes, classical Bayesian variable selection
attempts to infer a probability measure ove’d dimensional space. To
maintain feasibility, we follow previous strategies (P2802) and consider
single gene models.

2.1 Quantifying Shared Gene Function

A probabilistic quantification of shared gene function oseveral microar-
ray experiments is obtained by generalising Bayesian nmaskgssment for
individual data sets. We assess gene function by quardifyia importance
of a gene to a classifier which predicts a particular biolalgidassifica-
tion (e.g. mutant vs. wild type) from its expression valuéée suggest in
particular comparing two generalised linear regressionGMlagh & Nel-
der, 1989) models (GLMs) for every gene. One GLM predictsslabels
from gene expression measurements and an intercept teerotfier GLM
predicts class labels only from an intercept. The latter Girlevides class
priors and provides a base line accuracy which must be inegropon by
a functionally relevant gene. Usinigas gene index the binary indicatéy
denotes, for each gene, which of the two models is used wihah ofn
predictions. Consequently we may express the posteridrapitity of the
class labely,,: by P(yn,t|@n,t, By, It), where the regressos, ;, and
the regression coefficien8, depend onl;. ForI; = 0, 3, is a scalar and
xn,t = land forl; = 1, both@, andz,,: = [£n,¢, 1] are two dimensio-
nal column vectors, witld,, ;+ denoting suitably transformed and normalised
gene expression values. The predictiongf; can thus be regarded as a two
component mixture of GLMs. In a Bayesian context, (Spetra)., 2002; Lee
et al, 2003) found that it is convenient to model binary classiioe by pro-
bit link regression. The probit link GLM predic®(yn,: = O|xn,t, By, It)
as the value of a Gaussian cumulative distribution functamtf) with mean
mtT’th B¢, 1, and unit standard deviation at zero. If we denote all classifi
tions by Dy = [y1,¢, .., yn,t] @nd all regressors bX¢ = [@1,¢, .., Tn,t],
the probabilitiesP (yn,t|@n, ¢, B, It) give rise to the likelihood

p(De| Xt, By, It) = [ [ Plyn,tlnt, By, It). 1)

To obtain the joint distributionp (D¢, 3,| X+, It), Bayesian inference requi-
res multiplying the likelihood with a prior over regressiaoefficients,
p(B,|1+). The functional importance of genes is quantified by thegrist
probability P(I; = 1| D¢, X¢), (Bernardo & Smith, 1994). Normalising the
product of prior probability? (7;) and marginal likelihoogh( D¢ | X¢, It) =
fﬁt p(Dy, B| X+, It)d[3, we obtain the posterior

P(I)p(De|l, Xi)
31, PI)p(De Iy, Xe)

This principle is extended to inferring genes that show aeshdunctio-
nal importance in several microarray experiments. Aftandardising the
naming of transcripts across experiments e.g. by meanstuflogy map-
pings, indext represents the same gene in alinicroarray experiments.
Assuming that, giver;, all s experiments are conditionally independent,

P(It|D1t, X1,¢,.., Dy, 5, X¢,5) = (3)
P(I) [T, p(Dy,s|1t, Xt,s)
>, PUD) T, p(Deys| I, Xe,s)

provides a measure of shared gene importance. Typicallpalyss of sha-
red gene function selects subsets of important genes frdividoal data sets
and searches for genes shared by all subsets (see e.g.é€lfetal, 2006)).

Unfortunately this discards rank information and in aduitis sensitive to

P(I¢|Dy, X) = @

e
@ |
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Fig. 1. This directed acyclic graph (DAG) illustrates a probakiisnodel
for the analysis of shared gene function. Large rectangldisate a replica-
ted conditional independence relationship. Circles rggmecontinuous and
small squares discrete random variables. Shaded nodeseeprobserved
variables. All clear nodes are subject to inference. Genetion is measured
by the posterior probability over the binary indicatior

censoring effects as a gene of very high importance in onererpnt might
be just below the threshold in another experiment and thuapyear in the
final list. An analysis of shared gene function along thedioEEquation (3)
does not suffer either drawback.

There are potential dangers if the proposed approach isemwgited
naively: Bayesian inference can suffer from sensitivitgljlems (Bernardo
& Smith, 1994). As a result, the model probabilities in Edpat(3) and
the implied ranking might depend crucially on the hyper pseters used to
parameterise the prigr(3, |I;). We avoid this problem by specifying a prior
over all the hyperparameters that could contribute to sachdzerse effect,
and then inferring the hyperparameters as well.

2.2 Robust Modelling of Shared Gene Function

A model which takes these considerations into account septed in Figure
1. The core of the model is a latent variable implementatidnd¢ieu

et al, 2002; Holmes & Denison, 2003; Leet al, 2003) of the binary
classifier discussed above. We use indeas index over microarray expe-
riments, ¢ as transcript index aneh as observation index within expe-
riments. Variablez, s denotes a latent variable which, conditional on
its parents, has a univariate Gaussian distribution witmme” , .3,
and unit standard deviation. Fdf = 1 we use the log expressions as
regressorr, ¢,s. For Iy = 0 the regression is based on a common refe-
rence model which uses only an intercept. The indic&fodetermines the
component models for alk microarray experiments simultaneously and
this allows inference of the probability measures of shayede function,
P(It|D1,t, X1,t, -, D5, Xt,5)-

Variable B, , denotes the regression coefficients of the GLM. The prior
over B, , is a Gaussian distribution with zero mean and diagonal pre-
cision As. The robustness of inferrin@ (I¢|D1,¢, X1,¢, .., D¢,5, X¢t,5)
is improved by specifying this prior hierarchically and ngia product
of Gamma distributions as prior over the diagonal elementd o. This
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Gamma prior is parametrised by the coefficiehts and gs. The bino-
mial prior over I is specified indirectly by giving parameters a beta

slightly perturbed data set. Poor generalisation accuvatgrge variation in
the gene measures would be warning signs. If one has prilmgital know-

prior with countsd. Using these hierarchical priors reduces the sensitivity ledge about the gene expression assays, one can also chettlenthis is in

of P(It|D1,¢, X1,¢, .., Dt,s, X4, 5) to the choice of hyperparameters. The
posterior distributions ovek ; and= depend on the prior and on all informa-
tion the data provides about these variables. Since boihbles depend on
all transcripts, the influence of the hyperparameters iatyreeduced. This
important aspect of the model is further investigated inetkigeriments sec-
tion below. Concerning the relationship between the latangble, z,, ¢, s,
and the biological classificationgy,,¢,s, if zn,s,s < 0, the probability
P(yn,t,s = Olzn,t,s) is 1, otherwise it iS0. P(yn,t,s = 1lzn,t,s) iS

1 — P(yn,t,s = 0|zn,t,s). By integrating overz, ¢ s, (Denisonet al,
2002) show that this setting corresponds to a probit link GMdthematical
details of the joint distribution can be found in Equatiohi(6the Appendix.

2.3 Variational Inference

Inferring shared gene function requires calculating thegmal poste-
rior distributions over alll; from the DAG in Figure 1. A Mar-
kov Chain Monte Carlo (MCMC) technique along the lines of @,
1995) could, at the expense of high computational cost, ceqipate
P(I4|D1,¢, X1,t, .., D¢,5,X¢,5) With arbitrary accuracy, but careful
model checking would be essential and multiple MCMC runs ldiche
required. With conventional computer infrastructure sweh approach
quickly becomes infeasible. A Lapplace (MacKay, 1992; €hal., 2005) or
a variational approximation (Attias, 1999; Jordanal, 1999; Frey, 1998)
is computationally simpler and better suited for our pugsosNe decided
to base model inference on the variational learning framlevibat was
recently used in (Beatt al, 2005). Variational learning implies approxi-
mating the joint distribution of the model (Equation (6) retAppendix),
by a factorising Ansatz. For brevity we ugkfor all random variables,
D ={D,..,Ds}andX = {X1, .., Xg} to obtain the approximation

p(e‘G, H,é, D,X) ~ Q(o) = Q(ﬂ') HQ(AS) )]

IT (

I¢,t,s

x[Tew
t

We can now use Jensen’s inequality and obtain a lower bourttieoiog
marginal likelihood of the DAG.

e ( (0, D1G. 1.5, )a0) >

QB0 [[QCrmes):

®)

[, (105 (6. DIG. 1.5.X)) ~ 102 (2(6)) ) @(0)de

Variational learning requires maximising the lower bousddond line in
Equation (5)). This is done iteratively by integrating tlegative free energy
with respect to all but on€@-distributions from Equation (4) and maximising
the resulting functional with respect to the remainiQedistribution. This
provides, for even-function in Equation (4), a separate update rule. The
essential difference between typical modelling approa@rel the DAG in
Figure 1 is the hierarchical priors that couple all indiatigene models.
Details of the@-function updates are provided in the Appendix.

2.4 Computation of Shared Gene Function

An algorithm which infers shared gene function will iterateer all maximi-
sation steps for th€-distributions in Equation (4) and monitor the negative
free energy. Although there is no guarantee that we will@ehthe optimum
result, it is very important to use all possible safeguaodietect potentially
misleading conclusions. In this case, we have to ensuretihatalculated
measure of shared gene function does not overly depend @hdsen prior
and so a sensitivity analysis is vital. Such an analysis @xesrthe effect of
chosen hyperparameters on the probability measure ofdharee function
(Q(Iy) in Equation (12) and?(G = ¢|D, X) in Equation (13)). An addi-
tional sanity check is obtained by cross validation. Th@v/jates an estimate
of several gene measures and generalisation accuracypktehed from a

agreement with an inference of GO categories (Dopazo, 200@&yefore we
have inferred active GO biological process categories bidtis exact test
(Al-Shahrouret al, 2004). Details regarding implementation issues inclu-
ding pseudo code and how to predict the probabilities of onknbiological
classifications can be found in the online supplement (Sgiketal., 2007).

3 EXPERIMENTS

Based on synthetic data, this section will first illustratecanpa-
rison of the Bayesian approach with a standard method faedha
gene analyses. A combined analysis of a microarray timesecoifr
mouse mammary gland development (Clarksbal.,, 2004) and an
in-vitro culture of Endothelial cells under growth factoitidrawal.
(Johnsoret al,, 2004) is then used to infer genes that are related to
cell number control in both processes. These data serveasoth
biological gold standard and for demonstrating useful iéesgics.

3.1 Synthetic Data

We illustrate Bayesian modelling of shared gene functiongisvo
data sets, each containing three groups of variables eagiieg
simulated gene expression measurements. Within a groeipatia-
bles of both experiments were generated from the sametisomn.
Class separability is set to be different between groupssargknes
from the different groups have varying degree of importatee
the process of classification. The result in Table 1, coluiRari-
king” ahows that the Bayesian approach ranks the differemips
successfully, a property which is important for guidingldal-up
experiments and not available by filtering gene lists forsti@gene
names as, for example, used in (Hockéyal., 2006).

Table 1. Bayesian Rank Lists for Synthetic Data

Test of Censoring Ranking
genenr. Q(I;) | genenr. Q(I:)
gene3 0.999 | gene4  0.999
group 1 genel 0.999 [ genel 0.999
gene2 0.999 | gene3 0.999
gene4 0.999 | gene2 0.999
gene6 0.998 | gene7 0.554
group 2 gene8 0.995 | gene8 0.499
gene7 0.989 | gene6  0.400
gene5 0.969 | gene5 0.194
gene 10 0.147 | gene 12 0.049
group 3 gene 11 0.088 | gene 10 0.040
gene 12 0.042 | gene 11 0.039
gene9 0.033 | gene9 0.034

Analysing individually thresholded gene lists for sharezhg
function might censor important genes randomly. Threshgld
converts a continuous measure into a binary decsison alemé g
function and random effects like selecting particular biptal rep-
licates can alter the continuous measures. All borderlareg will
thus, to some extent by chance, appear important or notelbssay
assesses particular genes as most relevant and a secondirdsa
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these genes just outside the threshold, combining thewiitsen-
sor promissing candidates. Using synthetic data, we castiifite
this effect. The first and third group of genes were for bottada
sets generated from the same distribution. The genes irpgme
are relevant and those in group three irrelevant as prediofalass
labels. Consequently, the Bayesian assessment and thentiomal
approach agree for these groups about shared gene funttien.
genes in the second group show for one dataset very high atteefo
other only moderate class separability. The gene meashtamed
from the second dataset are in the range of the thresholdaarid,
shown in our online supplement (Sykacatal, 2007), all genes but
one are censored. By calculating shared gene functiontljiréee
Bayesian approach overcomes this problem and, as is @testin
table 1, column “Test of Censoring”, censoring is avoided.

3.2 Searching for Shared Apoptosis Genes

The approach of searching for shared genes presented hebe ca
applied in any situation where several microarray assaysrow
biological state transitions need be assessed for commoetige
behaviour. Here we are interested in inferring which gemeso&
shared relevance during two transitions: 1) the transitiom lac-
tation to involution in a mouse mammary gland cytlevivo, and
2) the transition from normal growth conditions to growtlcttar
withdrawal in anin vitro culture of human Endothelial cells. The
biological motivation for this investigation is that boikdues con-
tain endothelial cells, and the transitions both involvél death.
Therefore a shared analysis has the potential to providetigen
markers involved in endothelial cell death within the mamma
gland, even though no gene expression measurements waneaabt
from these cells in isolation.

The mouse mammary gland data was taken from (Clarksah,
2004) and timepoints were labelled as being apoptotic ofm#sés
that apoptosis is induced in involution. Expression valuese
obtained from two biological replicates measured usingvigtrix
Murine U74 arrays, with six samples from lactation and tenglas
during involution. From (Johnsoet al., 2004), who studied apop-
tosis in human endothelial cells, we took five samples und@aiip
factor withdrawal and five control samples that were meabwith
Affymetrix human U95 arrays. Cross annotations were takem f

Prior Dependency of Indicator Probabilities
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Fig. 2. Ordered probabilities of gene function plotted over alhgeripts for
different priors overA[d, d|. The expectation of\s[d, d] is fixed at0.01
and the prior variances change frdii—3 to 106,

The situation withA s is more subtle, since our choice will have
an indirect effect onQ(I;). Therefore it is imperative to study
the sensitivity of the model to choices 9f and h,. A sensiti-
vity analysis will depend mainly on the variandé|A[d, d]], with
respect to the priop(As|gs, hs). Thus we may fix the prior expec-
tation E[A[d,d]] to 0.01 and varyV[A,[d,d]] linear on a log
scale from107° to 1 by usingg, = {107°,107%,...,10%} and
hs = {1072,1072,...,10"}. Computer simulations revealed that
the prior overA;[d, d] has no effect on the approximate posterior
Q(As[d, d]), if we choose a variance that is larger then . See
online supplement for a graph with details of this invedtma The
ordered probability measuréy(I; = 1) in Figure 2 allow the same
conclusion from the gene measure. Variances smaller thari
result inp(As|gs, hs) having an undesired effect ap(I;). Cur-
ves for prior variances that are larger theiv ® are not shown as
they are essentially indistinguishable from the curve ioleth for
that value. Therefore we concluded that sensitivity to thesen
prior is avoided if we sek, < 10 andg, < 107",

the Affymetrix databases such that human and mouse genes tha

are orthologues were labelled the same. To increase censyst

3.2.2 Analysis of Gene Functionf we assume equal cost for

we followed (Mechamet al, 2004) and took only such probes that both types of error in deciding about gene function, we sthealect

could be matched in sequence by a NCBI blast search. Thiadeft all genes that have) (I

1) larger than0.5. For the chosen

with 4581 cross annotated transcripts. The expression values wer@yPerparameters, this suggests thei4 transcripts are potentially
extracted with MAS5.0, converted to log scale and normalised by of interest: a ranked list in tab-delimited format is praddin the

within-slide mean removal and scale adjustment. To ensatest|
regressors are on a similar scale, we transformed the logssipns
of each transcript to zero mean and unit standard deviatinaly-
sis for shared gene function compared the transcript sp&gifMs
with an intercept only GLM that models endothelial cell ajoms
and mammary tissue involution based on the prior frequenafe
labels as observed in the training data.

3.2.1 Sensitivity to Prior ChoicesTo ensure that inferences

online supplement. This is a large though plausible numbgeioes.
Given that we chose uninformative hyperparameters, wehseéte
hierarchical model allows the prior over regression coieffits to
adjust to the data sets. Here, the data favours small régmessef-
ficients. An illustration of this effect on synthetic datai®vided in
the online supplement. For the mammary gland data, the &sgbec
variances in the priors over intercept and regression cieftis are
0.13 and0.93. The respective values for the apoptosis datdare
and1.77. The small variance of the effective prior over the regres-

about shared gene function do not depend crucially on the chosion parameter implies a small complexity penalty for theea

sen hyperparameters, we specify the prig(g;|7) andp(8, .|As)

model (Jefferys & Berger, 1992). Therefore transcriptsfaveured

indirectly. We interpretr as the a-priori fraction of genes we believe over the intercept-only model, even if they provide onlytédiinfor-

to be involved in the biological process. This requires udéo
uninformative aboutr by using a small prior count liké = 1.

mation about the biological classification. To validate tbsult, we
used the model for ten-fold cross testing. Figure 3 illussdhe fold
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Fold Variation of the Gene Measure It is evident from Figure 2 that we will obtain fewer trangts
with probabilities larger thar®).5 by forcing small precisions in
the prior over regression coefficients. This however mearmon-
struct a convenient probability measure that has littlgpsupfrom

=4
=]
a

pragmatic approach of taking as many transcripts as oneffrad a
in subsequent steps according to the ranking of sharedidunadt
importance, and possibly using additional criteria suchrdshown
GO or pathway annotation.

o
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o

4 DISCUSSION

In this paper we propose a probabilistic model for a priredghte-
; grated analysis of several microarray experiments. Theqsed
Fold Number saf’ Affymetrix US5 Probes model is a result of careful considerations of sensitivéisuies. By
specifying priors hierarchically, we reduce the effectlbhgperpa-
rameters of the algorithm and provide conclusions thatustfied

t|D), for those ten genes that were ranked highest using all d&ta. by the data. The proposed approach shares with meta anggstes

observe some deviations from the optimal ordering whictdaesto random etal, 2005; D.e.Condet al, 2006; Hockleyet al, 2006) thg advan-
deviations in the microarray data. tage of combining data sets where the actual expressiotslefe

different experiments need not be matched. A considerablara
tage of a Bayesian analysis is that it provides rank infoionaand
does not suffer from the censoring effects of simple apgresi¢that
combine thresholded gene lists.

An application to shared analysis of gene function in mouamm
mary gland tissue and an endothelial cell line illustratess o
diagnose and avoid potential sensitivity problems. Assesss of
predictive accuracy and a confirmation of biological expgohs
reinforce the plausibility of the proposed approach. Tiselts sug-
gest that avoiding sensitivity is imperative in analysinignoarray
data, even if one can't follow up a large number of positivaesge
The proposed approach has two desirable properties. Falgbis
us to increase statistical power and cost efficiency by comgi
new assays with existing data. Even more important is thepget
of a successful search for molecular biological mechanibimisare
shared by developmental processes or state transitionffénedt
tissues or species. A fully Bayesian analysis for sharee demnc-
tion therefore has the potential to lead to biological ihssgthat
might be unobtainable by other means.

Fig. 3. This figure illustrates the fold variation of the gene meadu(G =

variation of the ten largest values of the gene meadtfé;, = ¢| D).
We see that fold-based rankings and the overall ranking gjivée
lar results. However, there are some deviations which atdithat
some slides are more influential than others. This effectilshioe
reduced by using larger sample sizes. Cross testing is loasade-
raging predictions which are weighted according to Equa(i8)
(c.f. (Sykaceket al,, 2007) for further algorithmic details). Selec-
ting the top-ranked transcript predictions (until the cletive gene
measurep ., P(G = t|D), reacheg).8), produces on averagi4
transcripts, and we obtain for both data sets a generalisatcu-
racy of 100%. High generalisation accuracy is reassuring since it
suggests that the probability measure did favour infonaagenes.

To assess the biological plausibility of our shared genesomea
we followed (Lewinet al., 2006), who inferred active GO catego-
ries by Fisher’s exact test. To do so, we regarded th&@gp of the
genes from the rank list as active and % genes at the lower
end as inactive and inferred, for every GO category, thefsignce
level of abundapce of active over inactive genes. To inerehs ACKNOWLEDGEMENTS
robustness of this assessment, we used the fold-based gesean@s ] ] ) )
as they arrose from estimating the generalization acesagigene  1he authors thank David MacKay for his advice and the editor
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APPENDIX
Joint Distribution

If we abbreviate the regression coefficients ofltranscripts and expe-
riments asB = {B; 1,...,B8r s}, al indicators asJ = {I1,...,It},
all latent variables a&f = {z1,1,1,...,2ng,7,5}, the precision matrices
asL = {Ai,...,Ag}, the hyperparameters & = {g1,...,95} and
H = {h1,...,hs}, we may express the joint distribution as

p(ﬂ-7L7B7J7Z7D‘G7H76):p(/n—‘6) (6)

S
« [T p(Aslgs, he) [T p2elm)
=1 t

@
|

X
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S
H (p(ﬁt,s‘A& It)
1s=1

t

N
X H (p(zn,t,slﬁt,sv It)p(yn,t,s|zn,t,s))) .
n=1

The conditional probability 0f,,¢,s givenzy ¢, is

1, if zn,es >0
P =1z = -
(Yn,t,s |2n,t,5) {07 if zZn,t,s <0
P(yn,t,s = O‘Zn,t,s) =1- P(yn,t,s - HZ”J’S)

The conditional probability oty ¢,s given B, ; and I; is a univariate
Gaussian

p(zn7t15 ﬁt,svlt) = (277)70'5

T 2
X exp <—0~5(2n,t,s - mn,t,s,ltﬁt,s,lt) ) .
The prior over3, ; is a multivariate Gaussian
_dny 0.5
P(Bes|As, It) = (2m)” 72" |As 1, [~

X exp <_0'5ﬁ’£s,ItAS,Itﬁt,s,It> ‘
The prior overl; is Bernoulli distributed
p(li|m) =0 (1 —e) 't
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The prior overA ¢ is a product of Gamma distributions

h-
p(As|957hs) :H As[dyd]gs_l
d <F(g5)

x exp(—As[d, d}hs)>
and the prior ovetr a Beta distribution
- T'(61 + 02)
T (81 (62)

To indicate a conditional dependency i we use the latter as index. The
equations link to the graph in Figure 1 by= [©, (1 — ©)] (i.e. a two state
probability) andd = [d1, d2] specifying the prior counts in the distribution
overm. Thed-th diagonal element of the matrix is denoted ad\ ;[d, d].

p(x|) 01U — @)1,

Variational Maximisation

Variational learning follows the generic approach sketichesection 2.3.
We iterate over integrating the negative free energy fromatiqn (5) with
respect to all but on&)-distributions and maximising the resulting func-
tional. For the@-distributions in Equation (4) we get the following update
equations.

Maximising with respect tQ(zz,,n,,s) results in a truncated Normal
distribution

1
Q(bn,t,s) — P(an,t,s)

X exp (_O'S(ZIt,n,t,s - ZAIt,n,t,S)Q)

Q21 my,s) = (2m) 705 )

5 T P
where Zlg,n,t,s = mlt,n,t,sﬁlt,t,s'

We useB,t t,s for the mode of the&)-distribution over3y, , .. The expres-
Sions®(an,t,s) and®(by,¢,s) denote Gaussian cdfs with meap, , ¢ s
and unit standard deviation at, ;s and b, ¢, s. The latter are implied by
the definition of P(yn,¢,s|2n,t,s): for yn,t,s = 1, we getan,¢,s« = 0 and
bn,t,s = 00; for yn,¢,s = 0, we getan,1,s = —oo andbn,¢,s = 0.

Maximising with respect t6)(0r,,n,t,s) results in a Gaussian distri-
bution

QBr, pr,s) = (2m) 0P ts | Ay, 4 00 ®)
1 A N
X exp (—E(IBIM,S - Blt,t,s)TAIt,t,s

X(IBIt,t,s - Blt,t,s))

where
Ns
A Z T
AItyt»S = <AIt»S> + wltynytaswlt,n,t,s
n=1

Nsg
. L1
IBIt,t,s = Alt,t,s Z LIy,n,t,s <ZIt7”»ta5>
n=1
f(bn,t,s) — flan,i,s)
P(bn,t,s) — Plan,t,s)’

<Z1t,n7t78> = Zlynit,s T

gdlt,s

sy = denoting the expectation under
hi,s hdIt \s

with <A1t,s> = diag <§1'5
the Q-distribution. In addition to previously defined symbofgp., ¢,s) and
f(an,t,s) denote Gaussian density functions with mean,, ; . and unit
standard deviation. We ugey, ,, to indicate that'; will select a sub matrix

of As.

Maximising with respect t@)(As) results in a product of Gamma
distributions over the diagonal terms of the prior precisioatrix A 5.
23d,s
QAs[d,d)) = =25 As[d, ) ©)
F(gd,s)

X eXp(_AS [d7 d]iLd,s)

where
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Maximising with respect t@(7) results in a Beta distribution over the
binary probabilityr

_ F(Sl + 52)
[(61)T(32)
where

81 =01 —‘,—ZQ(It = 1) andSQ =9 +ZQ([¢ = 0)
t t

Q(m) @11 (1 — @)(1=02) (10)

Inferring probabilities of shared gene functiomequires maximising
the lower bound of the log marginal likelihood in Equation th respect
to Q(I¢) which results in Bernoulli distributions ové.
5(Ic=i) exp(f1,)
Q) = P; ,where P, = ———"— and (11)
=11 TS en(fi)

fr, =0(01) =@+ (—% log A, ¢ s 12)

dIt,s
1 1 A )
toditst 5 > <¢(gd,s) - 10g(hd,s))
a=1

l/.T - -
3 (Blt,t,s (A1) Br, s Htr AI;t.,s <AIt,s>)

+ Z(log (®(bn,t,s) — ®(an,t,s))

1 o
T
_Emlt,n,t,sAIt,t,smIt,n,t,s) .

We usel; as index to indicate the conditional dependency of the bkegaon
the model indicator3,, . , for the mode of the)-distribution overg,, , .

. g ddy, s .
and(Aj, ) = diag les . ]u’itb as the expectation of;, ; under
)8 I8

the Q-distribution. The expressionB(an,¢,s) and®(bn,¢,s) denote Gaus-
sian cdfs with meargy, , ¢ s and unit standard deviation at, ¢ s and
bn,t,s. The latter are implied by the definition d?(yn,t,s|2n,t,s): for
Yn,t,s = 1, We getay ¢.s = 0andbn,¢,s = 00; for yn,¢,s = 0, we get
an,t,s = —oo andby,¢,s = 0. In addition we have)(z) as the digamma
function, § = th Szt andtr to denote the matrix trace operation. Shared
gene function of the-th transcript is captured b (I; = 1). We provide
with Q(I¢) an approximate measure of shared gene function, which com-
pares a transcript specific model against a common alteenatie can thus
assess transcripts relative to each other by transforming @;) into one
measure over @-dimensional ordinal variablé&r.

_ L QU=1 S QU =1)
P(G=tD,X) =~ Q(ItEO)/(;; Q([kEO)) (13)
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