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ABSTRACT
Motivation Biological assays are often carried out on tissues that
contain many cell lineages and active pathways. Microarray data
produced using such material therefore reflect superimpositions of
biological processes. Analysing such data for shared gene function
by means of well matched assays may help to provide a better focus
on specific cell types and processes. The identification of genes that
behave similarly in different biological systems also has the potential
to reveal new insights into preserved biological mechanisms.
Results In this paper we propose a hierarchical Bayesian model allo-
wing integrated analysis of several microarray data sets for shared
gene function. Each transcript is associated with an indicator variable
that selects whether binary class labels are predicted from expres-
sion values or by a classifier which is common to all transcripts. Each
indicator selects the component models for all involved data sets
simultaneously. A quantitative measure of shared gene function is
obtained by inferring a probability measure over these indicators.

Through experiments on synthetic data we illustrate potential
advantages of this Bayesian approach over a standard method. A
shared analysis of matched microarray experiments covering a) a
cycle of mouse mammary gland development and b) the process of
endothelial cell apoptosis is proposed as a biological gold standard.
Several useful sanity checks are introduced during data analysis and
we confirm the prior biological belief that shared apoptosis events
occur in both systems. We conclude that a Bayesian analysis for sha-
red gene function has the potential to reveal new biological insights,
unobtainable by other means.
Availability An online supplement and MatLab code are available at
http://www.sykacek.net/research.html#mcabf.
Contact peter@sykacek.net

1 INTRODUCTION
Robust methods for microarray data analysis are important for
advancing biological research, for example allowing more focus-
sed drug design and better assessment of pathogenicity (Bild et al.,
2006; Daveet al., 2006). Many approaches are available for the
analysis of single experiments, including methods based onstati-
stical testing (Tusheret al., 2001; Pan, 2002; Reineret al., 2003;
Wernischet al., 2003), Bayesian automatic relevance determina-
tion (ARD) (Li et al., 2002), Bayesian variable selection (Leeet al.,
2003; Bae & Mallick, 2004) and model selection (Li & Yang, 2002).
While experiments on relatively homogenous cells lines grown in
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tissue culture can give simple results, analysis ofindividual expe-
rimentsusing multicellular tissues provides a blurred view of the
molecular mechanisms operating in the tissue. This is caused by the
superimposition of biological processes in, and between, multiple
cell types. Here we show that a combined analysis of cell culture
and whole tissue microarray experiments forshared gene func-
tion reveals informative common details in the different systems.
If the assays are well-matched, correspondingly more focussed
answers are made available. Previous approaches for sharedana-
lyses have been through meta-analysis of gene lists (Yanget al.,
2005; DeCondeet al., 2006). In addition, recently (Huttenhower
et al., 2006) have proposed a Bayesian network for integrated ana-
lysis of microarray data, which combines pairwise correlations of
expression patterns.

Our approach to inferringshared gene functionis a fully Bayesian
assessment of whether we can establish, across experiments, a rela-
tionship between binary biological classifications (e.g. mutant vs.
wild type) and gene expression measurements. Using gene expres-
sion values as regressors, we model individual predictors by probit
link regression(Spanget al., 2002; Leeet al., 2003). Like (Liet al.,
2002; Leeet al., 2003), we use a Bayesian generalised linear model
(GLM). However we consider additional aspects: to provide amore
precise focus on specific molecular biological processes, our ana-
lysis combines information from heterogeneous sources, such as
whole tissues, with well-matched cultured cells. Such an approach
also has the potential to allow data from a new assay to be combi-
ned in a principled way with pre-existing data. This increases both
the statistical power and cost-effectiveness of experiments. To allow
calculation of probability measures reliably, we compare individual
genes against a reference model. We suggest use of a reference
which predicts biological classifications according to prior probabi-
lities which are estimated from the class frequencies in thetraining
data. This reference model does not use information from microar-
rays and must clearly be outperformed by functionally important
genes. The sensitivity of the results to subjectively chosen hyper-
parameters is minimised by following (Bae & Mallick, 2004) and
using hierarchical priors. Our first experiment is a simulation using
synthetic data and compares the Bayesian approach with a simple
meta analysis. We then apply the model to the shared analysisof
two timecourse experiments: 1) a cycle of growth and regression in
mammary glandsin vivo (Clarksonet al., 2004) together with 2)
an assay of programmed endothelial cell death investigatedin vitro
(Johnsonet al., 2004). Apoptosis of endothelial cells is known to
occur during the mammary gland cycle and may play an important
role in this process (Matsumotoet al., 1992; Djonovet al., 2001).
Computer simulations support this prior biological belief, provide
high predictive accuracy and confirm the strategy introduced here.
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2 METHODS
The following discussion assumes that biological samples are available with
both microarray gene expression measurements and a known binary classifi-
cation. In such situations, the importance of individual genes can be assessed
by Bayesian model criticism (Bernardo & Smith, 1994). Similar approaches
have previously been used by (Liet al., 2002; Leeet al., 2003), who applied
Bayesian variable selection to obtain a measure of gene importance. Assu-
ming an overall number ofT genes, classical Bayesian variable selection
attempts to infer a probability measure over a2T dimensional space. To
maintain feasibility, we follow previous strategies (Pan,2002) and consider
single gene models.

2.1 Quantifying Shared Gene Function
A probabilistic quantification of shared gene function overseveral microar-
ray experiments is obtained by generalising Bayesian modelassessment for
individual data sets. We assess gene function by quantifying the importance
of a gene to a classifier which predicts a particular biological classifica-
tion (e.g. mutant vs. wild type) from its expression values.We suggest in
particular comparing two generalised linear regression (McCullagh & Nel-
der, 1989) models (GLMs) for every gene. One GLM predicts class labels
from gene expression measurements and an intercept term. The other GLM
predicts class labels only from an intercept. The latter GLMprovides class
priors and provides a base line accuracy which must be improved upon by
a functionally relevant gene. Usingt as gene index the binary indicatorIt
denotes, for each gene, which of the two models is used withineach ofn
predictions. Consequently we may express the posterior probability of the
class labelyn,t by P (yn,t|xn,t,βt, It), where the regressor,xn,t, and
the regression coefficient,βt depend onIt. For It = 0, βt is a scalar and
xn,t = 1 and forIt = 1, bothβt andxn,t = [ξn,t, 1]T are two dimensio-
nal column vectors, withξn,t denoting suitably transformed and normalised
gene expression values. The prediction ofyn,t can thus be regarded as a two
component mixture of GLMs. In a Bayesian context, (Spanget al., 2002; Lee
et al., 2003) found that it is convenient to model binary classifications by pro-
bit link regression. The probit link GLM predictsP (yn,t = 0|xn,t,βt, It)
as the value of a Gaussian cumulative distribution function(cdf) with mean
xT

t,n,It
βt,It

and unit standard deviation at zero. If we denote all classifica-
tions byDt = [y1,t, .., yn,t] and all regressors byXt = [x1,t, ..,xn,t],
the probabilitiesP (yn,t|xn,t,βt, It) give rise to the likelihood

p(Dt|Xt,βt, It) =
Y

n

P (yn,t|xn,t,βt, It). (1)

To obtain the joint distribution,p(Dt,βt|Xt, It), Bayesian inference requi-
res multiplying the likelihood with a prior over regressioncoefficients,
p(βt|It). The functional importance of genes is quantified by the posterior
probabilityP (It = 1|Dt,Xt), (Bernardo & Smith, 1994). Normalising the
product of prior probabilityP (It) and marginal likelihoodp(Dt|Xt, It) =
R

βt
p(Dt,βt|Xt, It)dβt we obtain the posterior

P (It|Dt,Xt) =
P (It)p(Dt|It,Xt)

P

It
P (It)p(Dt|It,Xt)

. (2)

This principle is extended to inferring genes that show a shared functio-
nal importance in several microarray experiments. After standardising the
naming of transcripts across experiments e.g. by means of orthology map-
pings, indext represents the same gene in alls microarray experiments.
Assuming that, givenIt, all s experiments are conditionally independent,

P (It|D1,t,X1,t, ..,Dt,S ,Xt,S) = (3)

P (It)
Q

s p(Dt,s|It, Xt,s)
P

It
P (It)

Q

s p(Dt,s|It,Xt,s)

provides a measure of shared gene importance. Typically an analysis of sha-
red gene function selects subsets of important genes from individual data sets
and searches for genes shared by all subsets (see e.g. (Hockley et al., 2006)).
Unfortunately this discards rank information and in addition is sensitive to
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Fig. 1. This directed acyclic graph (DAG) illustrates a probabilistic model
for the analysis of shared gene function. Large rectangles indicate a replica-
ted conditional independence relationship. Circles represent continuous and
small squares discrete random variables. Shaded nodes represent observed
variables. All clear nodes are subject to inference. Gene function is measured
by the posterior probability over the binary indicatorIt.

censoring effects as a gene of very high importance in one experiment might
be just below the threshold in another experiment and thus not appear in the
final list. An analysis of shared gene function along the lines of Equation (3)
does not suffer either drawback.

There are potential dangers if the proposed approach is implemented
naı̈vely: Bayesian inference can suffer from sensitivity problems (Bernardo
& Smith, 1994). As a result, the model probabilities in Equation (3) and
the implied ranking might depend crucially on the hyper parameters used to
parameterise the priorp(βt|It). We avoid this problem by specifying a prior
over all the hyperparameters that could contribute to such an adverse effect,
and then inferring the hyperparameters as well.

2.2 Robust Modelling of Shared Gene Function
A model which takes these considerations into account is presented in Figure
1. The core of the model is a latent variable implementation (Andrieu
et al., 2002; Holmes & Denison, 2003; Leeet al., 2003) of the binary
classifier discussed above. We use indexs as index over microarray expe-
riments, t as transcript index andn as observation index within expe-
riments. Variablezn,t,s denotes a latent variable which, conditional on
its parents, has a univariate Gaussian distribution with mean xT

n,t,sβt,s

and unit standard deviation. ForIt = 1 we use the log expressions as
regressorxn,t,s. For It = 0 the regression is based on a common refe-
rence model which uses only an intercept. The indicatorIt determines the
component models for alls microarray experiments simultaneously and
this allows inference of the probability measures of sharedgene function,
P (It|D1,t,X1,t, ..,Dt,S , Xt,S).

Variableβt,s denotes the regression coefficients of the GLM. The prior
over βt,s is a Gaussian distribution with zero mean and diagonal pre-
cision Λs. The robustness of inferringP (It|D1,t, X1,t, ..,Dt,S ,Xt,S)
is improved by specifying this prior hierarchically and using a product
of Gamma distributions as prior over the diagonal elements of Λs. This
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Gamma prior is parametrised by the coefficientshs and gs. The bino-
mial prior over It is specified indirectly by giving parametersπ a beta
prior with countsδ. Using these hierarchical priors reduces the sensitivity
of P (It|D1,t,X1,t, ..,Dt,S ,Xt,S) to the choice of hyperparameters. The
posterior distributions overΛs andπ depend on the prior and on all informa-
tion the data provides about these variables. Since both variables depend on
all transcripts, the influence of the hyperparameters is greatly reduced. This
important aspect of the model is further investigated in theexperiments sec-
tion below. Concerning the relationship between the latentvariable,zn,t,s,
and the biological classifications,yn,t,s, if zn,t,s < 0, the probability
P (yn,t,s = 0|zn,t,s) is 1, otherwise it is0. P (yn,t,s = 1|zn,t,s) is
1 − P (yn,t,s = 0|zn,t,s). By integrating overzn,t,s, (Denisonet al.,
2002) show that this setting corresponds to a probit link GLM. Mathematical
details of the joint distribution can be found in Equation (6) in the Appendix.

2.3 Variational Inference
Inferring shared gene function requires calculating the marginal poste-
rior distributions over all It from the DAG in Figure 1. A Mar-
kov Chain Monte Carlo (MCMC) technique along the lines of (Green,
1995) could, at the expense of high computational cost, approximate
P (It|D1,t,X1,t, ..,Dt,S ,Xt,S) with arbitrary accuracy, but careful
model checking would be essential and multiple MCMC runs would be
required. With conventional computer infrastructure suchan approach
quickly becomes infeasible. A Lapplace (MacKay, 1992; Chuet al., 2005) or
a variational approximation (Attias, 1999; Jordanet al., 1999; Frey, 1998)
is computationally simpler and better suited for our purposes. We decided
to base model inference on the variational learning framework that was
recently used in (Bealet al., 2005). Variational learning implies approxi-
mating the joint distribution of the model (Equation (6) in the Appendix),
by a factorising Ansatz. For brevity we useθ for all random variables,
D = {D1, ..,DS} andX = {X1, ..,XS} to obtain the approximation

p(θ|G,H, δ,D,X) ≈ Q(θ) = Q(π)
Y

s

Q(Λs) (4)

×
Y

t

Q(It)
Y

It,t,s

“

Q(βIt,t,s)
Y

n

Q(zIt,n,t,s)
”

.

We can now use Jensen’s inequality and obtain a lower bound onthe log
marginal likelihood of the DAG.

log

„Z

θ
p(θ,D|G,H, δ,X)dθ

«

≥ (5)

Z

θ

“

log (p(θ,D|G,H, δ,X)) − log (Q(θ))
”

Q(θ)dθ

Variational learning requires maximising the lower bound (second line in
Equation (5)). This is done iteratively by integrating the negative free energy
with respect to all but oneQ-distributions from Equation (4) and maximising
the resulting functional with respect to the remainingQ-distribution. This
provides, for everyQ-function in Equation (4), a separate update rule. The
essential difference between typical modelling approaches and the DAG in
Figure 1 is the hierarchical priors that couple all individual gene models.
Details of theQ-function updates are provided in the Appendix.

2.4 Computation of Shared Gene Function
An algorithm which infers shared gene function will iterateover all maximi-
sation steps for theQ-distributions in Equation (4) and monitor the negative
free energy. Although there is no guarantee that we will achieve the optimum
result, it is very important to use all possible safeguards to detect potentially
misleading conclusions. In this case, we have to ensure thatthe calculated
measure of shared gene function does not overly depend on thechosen prior
and so a sensitivity analysis is vital. Such an analysis examines the effect of
chosen hyperparameters on the probability measure of shared gene function
(Q(It) in Equation (12) andP (G ≡ t|D,X) in Equation (13)). An addi-
tional sanity check is obtained by cross validation. This provides an estimate
of several gene measures and generalisation accuracy, eachobtained from a

slightly perturbed data set. Poor generalisation accuracyor large variation in
the gene measures would be warning signs. If one has prior biological know-
ledge about the gene expression assays, one can also check whether this is in
agreement with an inference of GO categories (Dopazo, 2006). Therefore we
have inferred active GO biological process categories by Fisher’s exact test
(Al-Shahrouret al., 2004). Details regarding implementation issues inclu-
ding pseudo code and how to predict the probabilities of unknown biological
classifications can be found in the online supplement (Sykacek et al., 2007).

3 EXPERIMENTS
Based on synthetic data, this section will first illustrate acompa-
rison of the Bayesian approach with a standard method for shared
gene analyses. A combined analysis of a microarray time course of
mouse mammary gland development (Clarksonet al., 2004) and an
in-vitro culture of Endothelial cells under growth factor withdrawal.
(Johnsonet al., 2004) is then used to infer genes that are related to
cell number control in both processes. These data serve bothas a
biological gold standard and for demonstrating useful diagnostics.

3.1 Synthetic Data
We illustrate Bayesian modelling of shared gene function using two
data sets, each containing three groups of variables representing
simulated gene expression measurements. Within a group, the varia-
bles of both experiments were generated from the same distribution.
Class separability is set to be different between groups andso genes
from the different groups have varying degree of importanceto
the process of classification. The result in Table 1, column “Ran-
king” ahows that the Bayesian approach ranks the different groups
successfully, a property which is important for guiding follow-up
experiments and not available by filtering gene lists for shared gene
names as, for example, used in (Hockleyet al., 2006).

Table 1. Bayesian Rank Lists for Synthetic Data

Test of Censoring Ranking
gene nr. Q(It) gene nr. Q(It)

group 1

gene 3 0.999 gene 4 0.999
gene 1 0.999 gene 1 0.999
gene 2 0.999 gene 3 0.999
gene 4 0.999 gene 2 0.999

group 2

gene 6 0.998 gene 7 0.554
gene 8 0.995 gene 8 0.499
gene 7 0.989 gene 6 0.400
gene 5 0.969 gene 5 0.194

group 3

gene 10 0.147 gene 12 0.049
gene 11 0.088 gene 10 0.040
gene 12 0.042 gene 11 0.039
gene 9 0.033 gene 9 0.034

Analysing individually thresholded gene lists for shared gene
function might censor important genes randomly. Thresholding
converts a continuous measure into a binary decsison about gene
function and random effects like selecting particular biological rep-
licates can alter the continuous measures. All borderline genes will
thus, to some extent by chance, appear important or not. If one assay
assesses particular genes as most relevant and a second assay finds
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these genes just outside the threshold, combining the listswill cen-
sor promissing candidates. Using synthetic data, we can illustrate
this effect. The first and third group of genes were for both data-
sets generated from the same distribution. The genes in group one
are relevant and those in group three irrelevant as predictors of class
labels. Consequently, the Bayesian assessment and the conventional
approach agree for these groups about shared gene function.The
genes in the second group show for one dataset very high and for the
other only moderate class separability. The gene measures obtained
from the second dataset are in the range of the threshold and,as is
shown in our online supplement (Sykaceket al., 2007), all genes but
one are censored. By calculating shared gene function directly, the
Bayesian approach overcomes this problem and, as is illustrated in
table 1, column “Test of Censoring”, censoring is avoided.

3.2 Searching for Shared Apoptosis Genes
The approach of searching for shared genes presented here can be
applied in any situation where several microarray assays covering
biological state transitions need be assessed for common genetic
behaviour. Here we are interested in inferring which genes are of
shared relevance during two transitions: 1) the transitionfrom lac-
tation to involution in a mouse mammary gland cyclein vivo, and
2) the transition from normal growth conditions to growth factor
withdrawal in anin vitro culture of human Endothelial cells. The
biological motivation for this investigation is that both tissues con-
tain endothelial cells, and the transitions both involve cell death.
Therefore a shared analysis has the potential to provide genetic
markers involved in endothelial cell death within the mammary
gland, even though no gene expression measurements were obtained
from these cells in isolation.

The mouse mammary gland data was taken from (Clarksonet al.,
2004) and timepoints were labelled as being apoptotic on thebasis
that apoptosis is induced in involution. Expression valueswere
obtained from two biological replicates measured using Affymetrix
Murine U74 arrays, with six samples from lactation and ten samples
during involution. From (Johnsonet al., 2004), who studied apop-
tosis in human endothelial cells, we took five samples under growth
factor withdrawal and five control samples that were measured with
Affymetrix human U95 arrays. Cross annotations were taken from
the Affymetrix databases such that human and mouse genes that
are orthologues were labelled the same. To increase consistency,
we followed (Mechamet al., 2004) and took only such probes that
could be matched in sequence by a NCBI blast search. This leftus
with 4581 cross annotated transcripts. The expression values were
extracted with MAS5.0, converted to log scale and normalised by
within-slide mean removal and scale adjustment. To ensure that all
regressors are on a similar scale, we transformed the log expressions
of each transcript to zero mean and unit standard deviation.Analy-
sis for shared gene function compared the transcript specific GLMs
with an intercept only GLM that models endothelial cell apoptosis
and mammary tissue involution based on the prior frequencies of
labels as observed in the training data.

3.2.1 Sensitivity to Prior ChoicesTo ensure that inferences
about shared gene function do not depend crucially on the cho-
sen hyperparameters, we specify the priorsP (It|π) andp(βt,s|Λs)
indirectly. We interpretπ as the a-priori fraction of genes we believe
to be involved in the biological process. This requires us tobe
uninformative aboutπ by using a small prior count likeδ = 1.
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Fig. 2. Ordered probabilities of gene function plotted over all transcripts for
different priors overΛs[d, d]. The expectation ofΛs[d, d] is fixed at0.01
and the prior variances change from10−3 to 10−6.

The situation withΛs is more subtle, since our choice will have
an indirect effect onQ(It). Therefore it is imperative to study
the sensitivity of the model to choices ofgs and hs. A sensiti-
vity analysis will depend mainly on the variance,V [Λs[d, d]], with
respect to the priorp(Λs|gs, hs). Thus we may fix the prior expec-
tation E[Λs[d, d]] to 0.01 and varyV [Λs[d, d]] linear on a log
scale from10−6 to 1 by usinggs = {10−5, 10−4, ..., 102} and
hs = {10−3, 10−2, ..., 104}. Computer simulations revealed that
the prior overΛs[d, d] has no effect on the approximate posterior
Q(Λs[d, d]), if we choose a variance that is larger than10−3. See
online supplement for a graph with details of this investigation. The
ordered probability measuresQ(It ≡ 1) in Figure 2 allow the same
conclusion from the gene measure. Variances smaller than10−3

result inp(Λs|gs, hs) having an undesired effect onQ(It). Cur-
ves for prior variances that are larger than10−3 are not shown as
they are essentially indistinguishable from the curve obtained for
that value. Therefore we concluded that sensitivity to the chosen
prior is avoided if we seths ≤ 10 andgs ≤ 10−1.

3.2.2 Analysis of Gene FunctionIf we assume equal cost for
both types of error in deciding about gene function, we should select
all genes that haveQ(It ≡ 1) larger than0.5. For the chosen
hyperparameters, this suggests that2164 transcripts are potentially
of interest: a ranked list in tab-delimited format is provided in the
online supplement. This is a large though plausible number of genes.
Given that we chose uninformative hyperparameters, we see that the
hierarchical model allows the prior over regression coefficients to
adjust to the data sets. Here, the data favours small regression coef-
ficients. An illustration of this effect on synthetic data isprovided in
the online supplement. For the mammary gland data, the expected
variances in the priors over intercept and regression coefficients are
0.13 and0.93. The respective values for the apoptosis data are0.11
and1.77. The small variance of the effective prior over the regres-
sion parameter implies a small complexity penalty for the larger
model (Jefferys & Berger, 1992). Therefore transcripts arefavoured
over the intercept-only model, even if they provide only a little infor-
mation about the biological classification. To validate theresult, we
used the model for ten-fold cross testing. Figure 3 illustrates the fold
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Fig. 3. This figure illustrates the fold variation of the gene measureP (G =
t|D), for those ten genes that were ranked highest using all data.We
observe some deviations from the optimal ordering which aredue to random
deviations in the microarray data.

variation of the ten largest values of the gene measure,P (G = t|D).
We see that fold-based rankings and the overall ranking givesimi-
lar results. However, there are some deviations which indicate that
some slides are more influential than others. This effect should be
reduced by using larger sample sizes. Cross testing is basedon ave-
raging predictions which are weighted according to Equation (13)
(c.f. (Sykaceket al., 2007) for further algorithmic details). Selec-
ting the top-ranked transcript predictions (until the cumulative gene
measure,

P

t
P (G = t|D), reaches0.8), produces on average424

transcripts, and we obtain for both data sets a generalisation accu-
racy of 100%. High generalisation accuracy is reassuring since it
suggests that the probability measure did favour informative genes.

To assess the biological plausibility of our shared gene measure,
we followed (Lewinet al., 2006), who inferred active GO catego-
ries by Fisher’s exact test. To do so, we regarded the top30% of the
genes from the rank list as active and the30% genes at the lower
end as inactive and inferred, for every GO category, the significance
level of abundance of active over inactive genes. To increase the
robustness of this assessment, we used the fold-based gene measures
as they arrose from estimating the generalization accuracies. A gene
is counted as active, if its indicator probabilityQ(It)fold is larger
than0.5 and the regression coefficientsβt,s have the same sign for
all experimentss. After Bonferroni correction for multiple testing,
we obtain238 gene ontology categories with a significant abun-
dance of active over inactive genes. Such analysis finds manyGO
categories that are indicative of shared metabolic changes. Our prior
expectation that both assays share certain events related to cell death
is confirmed since we find “programmed cell death” (GO:0012501),
“regulation of apoptosis” (GO:0042981), “negative regulation of
apoptosis” (GO:0043066), “anti-apoptosis” (GO:0006916), “cas-
pase activation via cytochrome c” (GO:0008635), “induction of
apoptosis via death domain receptors” (GO:0008625) and “apop-
tosis” (GO:0006915) are, with high significance, enriched by active
genes. An XML file with all active GO categories is provided asan
online supplement.

As a result of the hierarchical prior chosen in this work, we find
in an equal cost scenario many genes with functional importance.

It is evident from Figure 2 that we will obtain fewer transcripts
with probabilities larger than0.5 by forcing small precisions in
the prior over regression coefficients. This however meant to con-
struct a convenient probability measure that has little support from
the data and is thus not recommended. Instead we recommend a
pragmatic approach of taking as many transcripts as one can afford
in subsequent steps according to the ranking of shared functional
importance, and possibly using additional criteria such asunknown
GO or pathway annotation.

4 DISCUSSION
In this paper we propose a probabilistic model for a principled inte-
grated analysis of several microarray experiments. The proposed
model is a result of careful considerations of sensitivity issues. By
specifying priors hierarchically, we reduce the effect of all hyperpa-
rameters of the algorithm and provide conclusions that are justified
by the data. The proposed approach shares with meta analyses(Yang
et al., 2005; DeCondeet al., 2006; Hockleyet al., 2006) the advan-
tage of combining data sets where the actual expression levels of
different experiments need not be matched. A considerable advan-
tage of a Bayesian analysis is that it provides rank information and
does not suffer from the censoring effects of simple approaches that
combine thresholded gene lists.

An application to shared analysis of gene function in mouse mam-
mary gland tissue and an endothelial cell line illustrates how to
diagnose and avoid potential sensitivity problems. Assessments of
predictive accuracy and a confirmation of biological expectations
reinforce the plausibility of the proposed approach. The results sug-
gest that avoiding sensitivity is imperative in analysing microarray
data, even if one can’t follow up a large number of positive genes.
The proposed approach has two desirable properties. First it allows
us to increase statistical power and cost efficiency by combining
new assays with existing data. Even more important is the prospect
of a successful search for molecular biological mechanismsthat are
shared by developmental processes or state transitions in different
tissues or species. A fully Bayesian analysis for shared gene func-
tion therefore has the potential to lead to biological insights that
might be unobtainable by other means.
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APPENDIX

Joint Distribution
If we abbreviate the regression coefficients of allT transcripts andS expe-
riments asB = {β1,1, ...,βT,S}, all indicators asJ = {I1, ..., IT },
all latent variables asZ = {z1,1,1, ..., zNS ,T,S}, the precision matrices
asL = {Λ1, ...,ΛS}, the hyperparameters asG = {g1, ..., gS} and
H = {h1, ..., hS}, we may express the joint distribution as

p(π, L,B, J, Z,D|G,H, δ) = p(π|δ) (6)

×
S
Y

s=1

p(Λs|gs, hs)
Y

t

p(It|π)

×
T
Y

t=1

S
Y

s=1

“

p(βt,s|Λs, It)

×

Ns
Y

n=1

`

p(zn,t,s|βt,s, It)p(yn,t,s|zn,t,s)
´

”

.

The conditional probability ofyn,t,s givenzn,t,s is

P (yn,t,s = 1|zn,t,s) =

(

1, if zn,t,s > 0

0, if zn,t,s ≤ 0

P (yn,t,s = 0|zn,t,s) = 1 − P (yn,t,s = 1|zn,t,s)

The conditional probability ofzn,t,s given βt,s and It is a univariate
Gaussian

p(zn,t,s|βt,s, It) = (2π)−0.5

× exp
“

−0.5(zn,t,s − xT
n,t,s,It

βt,s,It
)2
”

.

The prior overβt,s is a multivariate Gaussian

p(βt,s|Λs, It) = (2π)−
dIt
2 |Λs,It

|0.5

× exp
“

−0.5βT
t,s,It

Λs,It
βt,s,It

”

.

The prior overIt is Bernoulli distributed

p(It|π) = ΘIt (1 − Θ)1−It .
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The prior overΛs is a product of Gamma distributions

p(Λs|gs, hs) =
Y

d

“ h
gs
s

Γ(gs)
Λs[d, d]

gs−1

× exp(−Λs[d, d]hs)
”

and the prior overπ a Beta distribution

p(π|δ) =
Γ(δ1 + δ2)

Γ(δ1)Γ(δ2)
Θ(δ1−1)(1 − Θ)(δ2−1).

To indicate a conditional dependency onIt, we use the latter as index. The
equations link to the graph in Figure 1 byπ = [Θ, (1−Θ)] (i.e. a two state
probability) andδ = [δ1, δ2] specifying the prior counts in the distribution
overπ. Thed-th diagonal element of the matrixΛs is denoted asΛs[d, d].

Variational Maximisation
Variational learning follows the generic approach sketched in section 2.3.
We iterate over integrating the negative free energy from Equation (5) with
respect to all but oneQ-distributions and maximising the resulting func-
tional. For theQ-distributions in Equation (4) we get the following update
equations.

Maximising with respect toQ(zIt,n,t,s) results in a truncated Normal
distribution

Q(zIt,n,t,s) = (2π)−0.5 1

Φ(bn,t,s) − Φ(an,t,s)
(7)

× exp
`

−0.5(zIt,n,t,s − ẑIt,n,t,s)2
´

where ẑIt,n,t,s = xT
It,n,t,sβ̂It,t,s.

We useβ̂It,t,s for the mode of theQ-distribution overβIt,t,s. The expres-
sionsΦ(an,t,s) andΦ(bn,t,s) denote Gaussian cdfs with meanẑIt,n,t,s

and unit standard deviation atan,t,s andbn,t,s. The latter are implied by
the definition ofP (yn,t,s|zn,t,s): for yn,t,s = 1, we getan,t,s = 0 and
bn,t,s = ∞; for yn,t,s = 0, we getan,t,s = −∞ andbn,t,s = 0.

Maximising with respect toQ(βIt,n,t,s) results in a Gaussian distri-
bution

Q(βIt,n,t,s) = (2π)−0.5dIt,t,s |Λ̂It,t,s|
0.5 (8)

× exp
“

−
1

2
(βIt,t,s − β̂It,t,s)

T
Λ̂It,t,s

×(βIt,t,s − β̂It,t,s)
”

where

Λ̂It,t,s =
˙

ΛIt,s

¸

+

Ns
X

n=1

xIt,n,t,sxT
It,n,t,s

β̂It,t,s = Λ̂
−1
It,t,s

Ns
X

n=1

xIt,n,t,s

˙

zIt,n,t,s

¸

˙

zIt,n,t,s

¸

= ẑIt,n,t,s −
f(bn,t,s) − f(an,t,s)

Φ(bn,t,s) − Φ(an,t,s)
,

with
˙

ΛIt,s

¸

= diag

 

ĝ1,s

ĥ1,s
, ..,

ĝdIt
,s

ĥdIt
,s

!

denoting the expectation under

theQ-distribution. In addition to previously defined symbols,f(bn,t,s) and
f(an,t,s) denote Gaussian density functions with meanẑIt,n,t,s and unit
standard deviation. We useΛIt,s, to indicate thatIt will select a sub matrix
of Λs.

Maximising with respect toQ(Λs) results in a product of Gamma
distributions over the diagonal terms of the prior precision matrixΛs.

Q(Λs[d, d]) =
ĥ

ĝd,s

d,s

Γ(ĝd,s)
Λs[d, d]

ĝd,s−1 (9)

× exp(−Λs[d, d]ĥd,s)

where

ĝd,s = gs +
1

2

X

t

X

It|dIt,t,s≥d

Q(It)

ĥd,s = hs +
1

2

X

t

X

It|dIt,t,s≥d

 

Q(It)

×
“

β̂It,t,s[d]
2 + Λ̂It,t,s[d, d]

−1
”

!

Maximising with respect toQ(π) results in a Beta distribution over the
binary probabilityπ

Q(π) =
Γ(δ̂1 + δ̂2)

Γ(δ̂1)Γ(δ̂2)
Θ(δ̂1−1)(1 − Θ)(1−δ̂2) (10)

where

δ̂1 = δ1 +
X

t

Q(It = 1) andδ̂2 = δ2 +
X

t

Q(It = 0)

Inferring probabilities of shared gene functionrequires maximising
the lower bound of the log marginal likelihood in Equation (5) with respect
toQ(It) which results in Bernoulli distributions overIt.

Q(It) =
Y

i

P
δ(It≡i)
i , where PIt

=
exp(fIt

)
P

i exp(fi)
and (11)

fIt
= ψ(δ̂It

) − ψ(δ̂) +
X

s

 

−
1

2
log |Λ̂It,t,s| (12)

+
1

2
dIt,t,s +

1

2

dIt,s
X

d=1

“

ψ(ĝd,s) − log(ĥd,s)
”

−
1

2

“

β̂
T

It,t,s

˙

ΛIt,s

¸

β̂It,t,s + tr Λ̂
−1
It,t,s

˙

ΛIt,s

¸

”

+
X

n

“

log (Φ(bn,t,s) − Φ(an,t,s))

−
1

2
xT

It,n,t,sΛ̂
−1
It,t,sxIt,n,t,s

”

!

.

We useIt as index to indicate the conditional dependency of the variables on
the model indicator,̂βIt,t,s for the mode of theQ-distribution overβIt,t,s

and
˙

ΛIt,s

¸

= diag

 

ĝ1,s

ĥ1,s
, ..,

ĝdIt
,s

ĥdIt
,s

!

as the expectation ofΛIt,s under

theQ-distribution. The expressionsΦ(an,t,s) andΦ(bn,t,s) denote Gaus-
sian cdfs with mean̂zIt,n,t,s and unit standard deviation atan,t,s and
bn,t,s. The latter are implied by the definition ofP (yn,t,s|zn,t,s): for
yn,t,s = 1, we getan,t,s = 0 andbn,t,s = ∞; for yn,t,s = 0, we get
an,t,s = −∞ andbn,t,s = 0. In addition we haveψ(x) as the digamma
function, δ̂ =

P

It
δ̂It

andtr to denote the matrix trace operation. Shared
gene function of thet-th transcript is captured byQ(It = 1). We provide
with Q(It) an approximate measure of shared gene function, which com-
pares a transcript specific model against a common alternative. We can thus
assess transcripts relative to each other by transforming all Q(It) into one
measure over aT -dimensional ordinal variableG.

P (G ≡ t|D,X) ≈
Q(It ≡ 1)

Q(It ≡ 0)

.“

T
X

k=1

Q(Ik ≡ 1)

Q(Ik ≡ 0)

”

(13)
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