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Abstract: The SIESTA project aims at defin-
ing a new description of human sleep. The ba-
sic idea of the algorithm described below is that
extreme states of the sleeping subject are classi-
fied with higher reliability. Hence we use labels
of the extreme states wake, deep sleep as well
as rapid eye movement sleep as well as all other
data without labels. In order to have some ben-
efit from unlabeled data, the classifier has to
model class conditional densities and class pri-
ors. This allows to use Bayes theorem and pre-
dict the a-posteriori probability of class. We
embed this classifier into a Bayesian framework
and use Gibbs sampling to infer model coeffi-
cients.

Introduction

SIESTA is an EC funded project with several clinical
and technical partners. We aim at designing a new
sleep analyzer that overcomes the shortcomings of the
current Rechtschaffen & Kales (R&K) standard. R &
K uses an ordered set of labels to describe different
sleep stages. The design of the SIESTA sleep analyzer
assumes that assigning intermediate stages is difficult
and the most reliable information clinicians can pro-
vide are labels for epochs of wake, deep sleep and rapid
eye movement (REM) sleep. The scorings of the R & K
hypnograms are based on polysomnographic recordings
which are also the basis of the STESTA sleep analyzer.
The main idea of the SIESTA sleep analyzer is to in-
terpret the entire night in the light of these extreme
states.

Methods

This contribution describes a classifier in the sampling
paradigm that is a classifier which is based on a gen-

erative model of class conditional densities together
with an appropriate training algorithm. The genera-
tive model is the Gaussian mixture model, (1).
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Using P, for the class priors and p(z|Cy) for
the class conditional densities, we may express the
posterior probabilities for classes as P(Cklz) =
Pyp(z|Cy)/p(z). The component densities p(z|Q,) can
be any parametrised density function. For sake of con-
venience we will use normal densities. Such an archi-
tecture has been used by [3], who used maximum like-
lihood methods for training.

We perform inference in the Bayesian framework us-
ing Gibbs sampling. The likelithood function using la-
beled as well as unlabeled data reads as:

p(T, X|0) = T T, Pupy (2, |Qk)HJ\m4:1p(£m|Q()2’)
where 7 denotes labeled and X unlabeled training
data. In (2) ©, are all coefficients the k-th class con-
ditional density depends on. We further use © for all
model coefficients together, n; as number of samples
belonging to class k£ and m as index for unlabeled sam-
ples. In order to allow sampling from the full condi-
tional, we have to choose priors over coefficients from
their conjugate family (see [1] for a detailed discussion
of conjugate analysis):

e Each component mean, my,, is given a Gaussian
prior: my ~ Ny(§, &).

e The inverse variance is given a Gamma prior:

=2 ~T(a, f).



e The hyperparameter, [, gets a Gamma hyper-

prior: f ~ T'(g,h).

e The mixing coefficients, w,,, get a Dirichlet prior:

e Class priors, P, also get a Dirichlet prior: P ~

D(3p,...,0p).

The quantitative settings are similar to those used in
[2]. The Gibbs sampler uses updates from the full
conditional distributions in (3). For notational con-
venience we use ©,, for the parameters that determine
class conditional densities. We use m_as index over
unlabeled data and ¢,, as latent class label. The in-
dex for all data is n, d, are the latent kernel alloca-
tions and ng4 the number of samples allocated by the
d-th component. One distribution does not occur in
the prior specification. That is Mn(1,...) which is a
multinomial-one distribution. Finally we need some
counters: my ... mg are the counts per class and myg
. mpg count kernel allocations of class-k-patterns. The

full conditional of the kernel variance contains I to de-
note the number of model inputs.
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Experiments

We used the classifier in the sampling paradigm to
perform some preliminary experiments on our STESTA
data. The results reported below were obtained using
the following features:

Inputs for classification
reflection coefficient at C3, 1 st. coeff.
reflection coefficient at C3, 3 rd. coeff.

Hjorth: emplx./(act. + mob.) at C3

Training was done using data from 1 recording. We
resampled the labels to equal class priors and added
all other data unlabeled. Then we draw 10000 sam-
ples from the a-posteriori distribution over model coef-
ficients. The first 5000 samples of the Markov chain are
regarded as “burn in” and not used for predictions. In
order to test the sleep analyzer, we generated a sleep
profile for an independent test recording. We obtain
three probability traces for stages wake, deep sleep and
REM sleep as shown in figure 1.
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Figure 1: Probabilities for states wake, REM and deep
sleep and the corresponding Rechtschaffen & Kales
scoring. Note that we smoothed using a 120 seconds
sliding window.
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Conclusion

The results obtained with the classifier proposed in this
contribution suggest that the approach is promising.
However some problems need to be solved: We have
to think about proper presentation of the results. The
probability plots are technically correct but not easily
comprehensible for the user. Some further evaluation
is needed to test how the method can be used to dis-
criminate different sleep disorders.
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