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Abstract: The SIESTA project aims at defining
a new description of human sleep. The sleep
analyzer is inferred by semi-supervised tech-
niques. Using good features is very important
as we can not improve on them in subsequent
processing stages. Hence we looked at various
preprocessing techniques and applied feature
subset selection techniques to select the most
promising ones. This paper presents results ob-
tained with two entirely different techniques:
Classical feature subset selection based on fea-
ture evaluation criteria and search algorithms
versus a methodology using Bayesian ideas: in-
tegrating over the entire space of probable fea-
ture subsets. We call this second approach the
Bayesian wrapper.

Introduction

In the EC funded project SIESTA| we aim at defining a
reliable and automatic description of human sleep. The
analysis system is based on polysomnographic record-
ings of EEG, EMG and EOG channels, as well as other
biosignals. Our target information are the most reli-
able labels for epochs of wake, deep sleep and rapid
eye movement sleep. In order to avoid losing some
important information, we decided to look at a range
of different preprocessing methods,; leading to a large
number of features - 234 from 6 EEG channels alone.
Statistics tells us that these are too many to use them
all in the subsequent analysis and we have to use fea-
ture subset selection (FSS). Conventional FSS is done
by searching for one promising subset. There are two
ways to evaluate feature subsets: to minimize a gen-
eral impurity measure or to measure performance of
the final classifier. Since FSS is a problem of model
selection, we have to use a significance test to decide
how many features to use. Such a filter approach is our

benchmark solution. However we think that in many
problems different subsets explain the targets equally
well and to prefer one of them cannot be justified. The
answer to this problem is the Bayesian wrapper: We
find the entire a-posteriori distribution over the space
of all feature subsets and predict by marginalizing over
this distribution.

Feature subset selection

The large initial number of features available here
forces us to use sequential forward selection (sfs), a
suboptimal search algorithm. This search algorithm is
combined with two different feature evaluation criteria:
We used the likelihood function of logistic regression
and the so called gini index ([2]):
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Evaluation of (1) needs estimates of the a-posteriori
probabilities for class, P(k|v). We used a k nearest
neighbor classifier to provide these. After having found
a new promising feature, we use a statistical test that
checks whether the classification accuracy increases sig-
nificantly. We count the errors made by one classifier
and not by the other (n,) and vice versa (np). The
difference is significant if (nq,ns) can not be explained
as probable observation of a binomial B, (0.5, n, + np)
distribution.

The Bayesian wrapper

The Bayesian approach to feature subset selection is
to avoid 1t. The Bayesian wrapper samples the entire
a-posteriori distribution over feature subsets and pre-
dicts by integrating over this distribution. In [3] such
an approach has been applied to variable selection for



Table 1: Results from conventional FSS

Features from gini index

stochastic complexity at C3
Hjorth coefficient at Fp2, cmplx/(act*mob)

Features from logistic regression

reflection coefficient at C4, 1 st. coeff.
power spectral density at Fp1, Beta (12.5-30.0 Hz)
AR coefficient at C3, 2 nd. coeff.

linear regression. Qur problem is slightly more com-
plicated: the classifier is an architecture with a non-
linear dependence of predictions on some model coef-
ficients. Hence the Bayesian model evidence can not
be derived analytically and we have to resort to the
reversible jump Monte Carlo sampling algorithm (re-
versible jump MC) recently proposed by [1]. This algo-
rithm is an extension of Metropolis Hastings updates
that allows sampling across different dimensional pa-
rameter spaces. The Bayesian wrapper uses two dif-
ferent moves. One consists of a dimension increasing
and a matching dimension reducing step. The second
move exchanges two inputs which allows “tunneling”
through low likelihood regions. Fixed dimension sam-
pling is carried out with Gibbs updates similar to those
used in [4].

Experiments

We used data from four selected recordings of the
SIESTA database. The targets are 30 seconds based
Rechtschaffen & Kales (R & K) labels of states wake,
REM and deep sleep. The following features were cal-
culated for segments of one second duration: Coher-
ence functions, power spectral densities, Kalman AR-
coefficients, Hjorth coefficients, stochastic complexity
measures and finally static reflection coefficients. The
difficulty of this FSS was that the algorithms used dif-
ferent window lengths. Together with the 30 seconds
based R&K scorings, this means that features can not
be compared. Features with longer windows will be
preferred. In order to avoid that longer windows are
an advantage, we decided to run the FSS with the me-
dian segment of each 30 seconds epoch. Resampling to
equal priors, we get 546 samples. The results of both
algorithms are summaried in table 1.

The Bayesian wrapper was used with data from elec-
trode C3 only. This reduces the total number of avail-
able features to 43. After drawing 10000 samples from
the a-posteriori distribution of model coefficients and
different dimensions, we discarded the first 5000 sam-
ples as burn in. The probabilities of feature subsets
observed in the remaining samples are plotted in fig-
ure 1.

Probabilties of feature subsets
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Figure 1: Probabilities of input subsets measuring their
relevance.

Conclusion

The results obtained from feature subset selection sug-
gest that the subsequent analysis should use groups of
two or at most three features. The most promising
features are static reflection coefficients, the Hjorth co-
efficients and the stochastic complexity measures. We
also find power spectral estimates and Kalman AR co-
efficients to be of some importance.
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