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Abstract. We propose in this paper an entirely probabilistic approach
to sleep analysis. The analyser uses features extracted from 6 EEG chan-
nels as inputs and predicts the probabilities that the sleeping subject
is either awake, in deep sleep or in rapid eye movement (REM) sleep.
These probability estimates are provided for different temporal resolu-
tions down to 1 second. The architecture uses a “divide and conquer”
strategy, where the decisions of simple experts are fused by what is usu-
ally refered to as “naive Bayes” classification. In order to show that the
proposed method provides viable means for sleep analysis, we present
some results obtained from recordings of good and bad sleep and the
corresponding manual scorings.

1 Introduction

This paper proposes a sleep analyser that maps all night EEG recordings to
3 probability plots. We model the probabilities of being awake, in deep sleep
and in REM sleep with temporal resolutions down to one second. Allowing for
probabilities and for high temporal resolutions is motivated by prior experiences
with a similar method which were reported in [PRTJ97]. The hope is that using
such an approach allows us to improve upon classical Rechtschaffen and Kales
(R&K) rules [RK68]. Although useful for many purposes, this standard has raised
dissatisfaction (e.g. [PSKH91)).

— The rules are based on rather short events in the EEG. In the worst case up
to 98% of the EEG signal in a scoring window could be ignored.

— R&K rules use amplitude based criteria and rather large scoring windows,
which is valid for healthy young subjects. The rules do however not account
for aging effects and they fail to work for some important sleep-disturbances
(e.g. sleep apnoea).

The analyser proposed in this paper differs from that in [PRTJ97] by al-
lowing for an entirely probabilistic approach. This has the advantage that all
uncertainties (e.g. from noise contamination of the EEG recordings) will lead
to less certain decisions about the state of the sleeping subject. The analyser
consists of three major building blocks:



— a preprocessing stage,
— a classification stage implemented as a generative model
— and a sensor fusion stage.

The paper also presents some first results obtained from four recordings.
Two of the recordings represent “good sleep”! (a young male and an elderly
female) and two recordings represent “bad sleep” (two middle aged females, one
control and a patient with an anxiety disorder). We conclude from this evaluation
that the proposed method captures these overall aspects. Contrary to the R&K
scoring, which does not find any stage 4 in the recording of the elderly female,
the proposed method shows a clear sleep cycles.

2 Methods

The first step in the analyser design was to decide upon an optimal preprocessing
technique. We performed an extensive investigation with different feature subset
selection (FSS) techniques. Details of this analysis were reported in [SRRT99]
and [Syk00b]. The investigation revealed that we should prefer the use of com-
plexity measures and autoregressive (AR) model parameters (without preferring
either of these techniques) as opposed to classical FFT based features. We de-
cided for theoretical reasons? to use AR models in a lattice filter representation.
The second result of this evaluation is that the optimal number of AR coefficients
for classifying EEG is as small as 3. These lattice filter coefficients are used as
inputs in a modular design, which is motivated by several interesting properties.

— We build several simple classifiers (experts) on top of each electrode and
hence avoid the curse of dimensionality of fitting one large model.

— The low input dimension allows us to use a fully generative model which is
trained using labelled and unlabelled data3.

— Fusing multiple experts will increase the reliability of the overall system
because information from such segments where the experts disagree (e.g.
caused by electrode failure) will be downweighted.

— The proposed architecture can be extended very efficiently.

2.1 A Bayesian lattice filter

The lattice filter is a representation of an auto regressive (AR) model. The pa-
rameters of the lattice filter are the so called refection coefficients, below denoted
as pm. Equation (1) shows an AR model, where yt] is a sample of a time series
at time ¢, a,, is the m-th AR coefficient and e[t] a sample of an independently

! That was judged by human experts.

2 A probabilistic formulation of complexity measures has so far not been successful.

3 We use labels only for such segments that were unanimously classified by three
human experts. Hence we have plenty of unlabelled data.



identically distributed (i.i.d.) Gaussian innovation sequence with zero mean and
precision (inverse variance) 3.

ylt) =Y ylt — man, +e[t] (1)

m=1

We refer to [Lju99] for details of how to reparameterise Equation (1) in terms
of reflection coefficients. Using a lattice filter representation increases the com-
putational efficiency and allows us to use a “stability prior” 4. The reflection
coefficients of stable AR models must lie in the intervall [—1,1]. This stability
requirement may be coded by a flat prior p(p,,) = 0.5. For the precision 3 we
use the prior p(8) = 1/ as is suggested in [Jef61]. The posterior in Equation (2)
is obtained by integrating the AR coefficients and 3 out of the joint distribution
over all coefficients.
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Equation (2) denotes the time series used for inference as ). The model indicator,
I,,,, represents the hypothesis that an m-th order AR model has generated ).
The multiplicative constant p(Y|I,,) is the so called model evidence. Further
aspects of how to calculate and to use the evidence for model selection can be
found in [Syk00a].

Equation (3) shows the most probable value of p,, and its variance. The
equations use N as number of samples in V. We define ¢, as the vector of
forward prediction errors of the (m — 1)-th order AR model in Y and r,,, as the
vector of the corresponding backward prediction errors®
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Inference of reflection coefficients was performed with the following settings:

Recordings with different sampling rates were resampled to 200 Hz.

— Calculations use a two seconds window that is shifted by one second offsets.

— The data in each window are linearly detrended and normalised to unit
standard deviation.

— The time delay operation which is performed in the order recursion is coupled

with pre and post windowing (see [Lju99]).

2.2 Classification

As already mentioned, the classifier models the joint density over inputs and
labels. We use a fully generative model with K classes, where each of the class

4 Sleep EEG is necessarily generated by stable AR models.
5 The backward prediction errors are the errors when precicting one time step into
the past. That is with model order m — 1, we predict y[t — m].



conditional densities are modelled by a mixture model with D Gaussian kernels.
Equation (4) abreviates the set of reflection coefficients which acts as input into
the classifier as = {p1, p2, ..., pm }. Hence the classifier is expressed as

3 Puplalk), where p(alk) = 3 wspllin ). ()
k=1 d=1

In Equation (4) Py, are K class priors and p(z|k) are K class conditional densities.
Hence we may express the posterior probabilities for classes by Bayes’ theorem
to give P(k|z) = Pyp(z|k)/p(z). The D component densities p(z[p ,, Xy) are
normal densities with mean, p ’ and diagonal covariance matrix, 2 ;. The wq
denote the D class conditional kernel priors. We use this model for two reasons.

— Generative models give us the possibility to solve missing data problems. In
particular we exploit their ability to cope with missing target labels.

— Generative models allow for probabilistic cluster assessment and hence pro-
vide deeper insight into the problem structure.

The key problem in training this classifier is to choose an appropriate number of
Gaussian components, which is implicit when learning is performed in a Bayesian
setting ([Bis95]). We use here a variational Bayesian framework ([JGJS99]). Re-
cently [Att99] applied variational learning to Gaussian mixture models, which
are similar to the classifier we use here.

Bayesian inference requires that we specify a likelihood function. Using ¢,, to

denote known class labels and ¢ for the model coefficients, we obtain the joint
likelihood of all labelled, 7, and unlabelled data, X.
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The next step in any Bayesian analysis is to specify priors over all model
coefficients. We adopt here a setting that was proposed in [RG97]:

— Bach component mean, pq,;, is given a Gaussian prior pi ~ Ni(&, n;il),

— The inverse variances are given a Gamma prior: O'd ~ I'(a, 8;),

— The hyper-parameter, (3;, is given a Gamma prior: ﬂ, ~ I'(g,h;),

— The class conditional kernel prior, W,, is given a Dirichlet prior:
W, ~D(ow,...,0w),

— The class prior, P, is given a Dirichlet prior: P ~ D(dp,...,0p),

in which 4 denotes a particular input dimensions. The hyper-parameters have
to be set a-priori. Values for a are between 1 and 2, g is usually between 0.2
and 1 and h; is typically between 1/R? and 10/R?, with R; denoting the range
of the i-th input. The mean, pu;, is given a Gaussian prior centred at the range
midpoint, &;, with inverse variance x;; = 1/R12. Both the prior counts dp and
Sy are set to 1 to give the corresponding probabilities the most uninformative
proper Dirichlet prior. We note however that our inference results did never



depend critically on the setting of the hyper-parameters. In fact we used the
same setting successfully for a range of different problems.

Having specified a likelihood and priors, we are ready to derive the varia-
tional approximation of the posterior. The key idea is to obtain an approxima-
tion of the Bayesian posterior by maximising a lower bound of the logarithmic
model evidence, 1og(f¢ p()p(T, X|p)dp). We approximate the posterior by a

mean field expansionip(<p|’f X) = Qp) = [y, Qg,), and use Jensens in-
o, C\E

equality to obtain F(Q(y f log( W)Q(g)dg as a lower bound to

the logarithmic model ev1dence. For our classifier, the natural factorisation is
Qp) = I1.(Q(r,) x 11, Qoa,:)) x II;, Q(Wk) x Q(P). This finally leads to the
functional shown in Equation (6), where we use n to denote labelled samples, m
to denote unlabelled samples and I as the number of inputs.
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The mean field assumption (i.e. the independence assumption among the Q-
functions) allows the maximisation of Equation (6) to be done separately w.r.t.
every Q-function. Maximising w.r.t. one Q-function involves an E-step, where
we take the expectation of the functional F(Q) w.r.t. all other Q-functions, and
an M-step which involves minimising a Kullback-Leibler (KL) divergence. After
each iteration we evaluate F(Q) and test for convergence. Usually we observe
convergence after at most 100 iterations. Although F(@Q) is only a lower bound
of the logarithm of the model evidence, [Syk00a] contains several examples where
model selection gave the correct result. Similar iterations are done for predicting
probabilities of test samples. The main difference is that the Q-functions over
model coefficients are fixed. The maximum of F(Q) is then found in between
two and five iterations.



2.3 Sensor fusion

Sensor fusion is used to combine predictions of multiple experts and across time
to obtain a desired resolution. We use a sliding window and assume that the
observations in the window are class conditionally independent. In this case we
obtain the resulting probability by a “naive Bayes” expression, which is identical
to one of the techniques advocated in [PHR99].

PO VT, Pltfra)
> P(R) =D Ly Pklw:)
The optimal window size depends on the resolution we aim at. In this paper we

use 30 seconds, which is equivalent to the R&K window length that was used by
the human experts.

(7)
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3 Experiments

The experiments have been peformed using recordings of 14 healthy subjects
otained at at different sleep centres. As already mentioned we use only such labels
of R&K stages wake, REM sleep and stage 4 that were unanimously classified
by three human scorers, one of them providing a consensus scoring. These labels
were further subsampled to get equal class priors®. The inputs were obtained
by extracting three reflection coefficients from each of the EEG electrodes (Fpl,
C3, 01, Fp2, C4 and 02).

Using these data, we trained one classifier for each electrode. Across elec-
trodes we find that the optimal number of Gaussian components is between
10 and 19. The plots shown in Figures 1 and 2 illustrate the information ex-
tracted by the proposed approach. The left plots in Figure 1 were obtained from
a recording of a young male. The right plots in Figure 1 were obtained from a
female aged 65 years. It is evident that the probabilities obtained with our sleep
analyser show less aging effects than do the corresponding R&K scorings, where
there is no sign that the elderly person reaches stage 4 at all. The plots in figure
2 show examples of bad sleep - mostly because of rather long wake phases during
the night. Also for these examples we see that the structure of sleep is preserved
in our plots. We would like to emphasise that we can easily distinguish between
REM and non-REM, which is known to be difficult from EEG alone.

4 Conclusion

We proposed in this paper an entirely probabilistic approach to sleep analysis.
The proposed classifier allows the use of unlabelled data for inference. Model
selection is part of the training procedure.

5 As inference is based both on labelled and unlabelled data this does not imply that
the optimal priors are equal.



Applying the classifier to some sleep recordings we can certainly assess that
the proposed method preserves the structure of sleep that is also found in manu-
ally labeled R&K scorings. We see a clear indication of deep sleep also for elderly
subjects and with that respect have overcome a known problem of R&K scoring
rules.

R&K states

Fig. 1. Probability traces showing good sleep. The probabilities were obtained by com-
bining all EEG channels with a 30 seconds sliding window. An R&K scoring is added
to allow for a comparison with the classical scoring technique. Both plots shows a good
perfect correspondence between our plots and the R&K labels. The right hand plots
were obtained from an elderly subject. They correctly show phases of deep sleep which
are missing in the R&K scoring.
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