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Talk Overview

» Motivation of Probabilistic Concepts

» BCI, current practice & shortcomings
 Probabilistic Kalman Filter
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» Gene Discovery

» DAG for Bayesian Marker ldentification
» Gene Selection

 Discussion of Model Selection
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Probabilistic Motivations

Thomas Bayes (1701 - 1763)
Learning from data using a
framework
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Probabilistic Motivations

Thomas Bayes (1701 - 1763)
Learning from data using a
framework

First consequence: we
must revise beliefs ac-
cording to Bayes theorem
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Probabilistic Motivations

Thomas Bayes (1701 - 1763)
Learning from data using a
framework

, Where

< ula) >= [ u(o,z)p(z|D)de.

First consequence: we Second conseguence: De-

must revise beliefs ac- cisions by maximising ex-
cording to Bayes theorem pected utilities

jump 2 TOC Probabilistic Methods with Applications, Peter Sykacek, 2004 — p.3/23



Brain Computer Interface

X

e

o
[

Computer is controlled directly by cortical activity.
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Classification of BCIs

Cognitive events — > high spatial
‘ and temporal resolution; highly inva-
Neurdl activity sive!; allows 2-d control of artificial
limb.
— > low spatial and
ScAp EEG Intracranial EEG temporal resolution; no permanent in-
/ \ terference with patient; slow! at most
voluntary control — involuntary events (P300) 20 bit per minute and task.

(mostly motor tasks)
— > focus on BCI’s based on scalp recordings.

— > low Dbit rates; last resort If no other communica-
tion possible
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BCI with almost no adaptation

» P300 based: L. A. Farwell and E. Donchin, — >
User intention Is embedded within a sequence of
symbols. The correct symbol leads to “surprise”
and triggers a P300.

 Filter & threshold: N. Birbaumer etal. , — >
threshold slow cortical potentials; J.R. Wolpaw
etal., — > threshold moving average in an
appropriate pass band e.g. p-rhythm.
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BCI & static pattern recognition

 Extract representation of EEG “waveforms” (e.g.
low pass filtered time series; spectral
representation)

 Parameterize supervised classification implicitly
assuming stationarity.

Technical setup changes during operation?
(e.g. electrolyte changes impedance)
User learns from feedback?
User shows fatigue?
Assuming stationarity

— >
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Probabilistic Kalman Filter

observation n
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Probabilistic Kalman Filter

observation n

get A right (may regard 1/ as
learning rate)
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Probabilistic Kalman Filter

observation n

get A right (may regard 1/ as
learning rate)
Non linear and non
Gaussian, some eqns.
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Probabilistic Kalman Filter

window sz. 1
window sz. 5

- window sz. 10
window sz. 15

d "’AVIW/JMWNWWV window sz. 20

window sz. 1
window sz. 5

- window sz. 10
window sz. 15
window sz. 20

observation n

[llustration of < A > and “in-
get A right (may regard 1/\ as  stantaneous” generalization error for

learning rate) B. D. Ripley’s synthetic data with ar-
Non linear and non tificial non-stationarity (swap labels
Gaussian, some eqns. after sample 500).
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Adaptive BCI

by variational Kalman filtering.

data driven prediction of cognitive state from EEG measurements.

EEG dynamics during a cognitive task are subject to
temporal variation (learning effects, fatigue ...)

by z-transformed reflection coefficients.
, adaptive method and identical “stationary” model.
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Communication Bandwidth

bit rates rpy) [bit's] |
task VSi P,
rest/move no fb. 0.10 < 0.01
rest/move fb. 0.13
move/math no fb. 0.11
move/math fb. 0.10
<00

audit./move 0.35
navig./move 0.28
navig./audit. 0.34

adaptive methods increase BCIl band-
widths even on short time scales.
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Gene discovery

Discovering “important” genes (or proteins) from
microarray datasets can be classified as

« |dentification of 2!! differentially expressed
genes.

« |dentification of reliable (sets) of genes.

Current practise for the first: classical methods (e.qg.
on differences of means) or
approaches with one for each gene.

The second is typically done by conventional
. As a result we obtain a set of genes
that was found by heuristic search.
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Bayesian Marker Identification

Missing in FSS: How good are other explanations?

Interpret microarray data as of
“genetic” regressors wW.r.t. a discrete response.
— > provides this

Information. However: hopeless, unless we constrain
the dimensionality.

Simplified attempt: — > Find distribution over
Individual genes.

Probabilities result from the of
each model.

ffw (D]w)p(w|I)P(I)
> 1 Ja P(D|w)p(w|I) P(I)dw’
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DAG for Marker ldentification

Latent variable probit GLM.

z, 1S a one dimensional Gaus-
sian random variable with mean
w?! z,, and precision 1.

1, ifz, >0
Plyn = Hem) = {o if 2, < 0
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DAG for Marker ldentification

Latent variable probit GLM.

z, 1S a one dimensional Gaus-
sian random variable with mean
w?! z,, and precision 1.

1, ifz, >0
Plyn = Hem) = {o if 2, < 0

can be done by a variational method
(systematic error) or by sampling (random error). The
latter allows to integrate over w analytically and we

draw from z,, and I only.
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Asymptotic Behaviour

Bayes Posterior, Leukaemia Bayes Posterior, Colon cancer
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Comparison with ML

Leukaemia Colon cancer
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Results differ since Bayesian model posteriors take
“complexity” (ref. Hochreiter’s “flat minima”) into

account.
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Selection and Gen. Accuracy

Most probable regressors
selected at a 0.99 threshold Generalization accuracy

Dataset B. probit  “indifference”

Acc. no. description P(I|D)

Colon 84% 74% to 94%
Leukaemia 88% 91% to 96%

Colon Cancer (Alon et. a.)
Z50753  Uroguanylin 0.76
R87126 Myosin 0.21
M63391 desmin gene 0.01
M36634  vasoact. pept. 0.01

Leukaemia (Golub et. a.)

X95735  Zyxin 0.93
M55150 FAH Fumarylac. o:J cer development.
M27891 CST3Cystatin C 0.01

No “better” results in literature — >
confirms model.

Biology confirms Uroguanylin (cell
apoptosis) as important in colon can-
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Discussion

Quoting P(I|D) — > model selection
with .
Our approach should assume an scenario.

Under asymptotic normality, P(I|D) degenerates on I; € M that minimizes
J pylw:) log(p(y|w:) /p(ylw:))dy).

If the predictive distribution of a new observation Is of
Interest, B&S’s suggest to use a

for M-open model comparison.

/ log(p(y|1:, D))p(y|D)dy

(e.g. cross validation estimate, still to be done)
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A simple 1dea.

the world Is probabilistic model.

jump 2 TOC

Applications often require structure:
a part and a

Classical approach: treat both parts separately
and thus regard features as sufficient statistic of
the data. — > Features are deterministic
variables.

Our suggestion: treat such hierarchical settings as
. — > Feature extraction
IS a
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Bayes’ Consistent Models




Bayes’ Consistent Models

requwes
to Integrate over e
known variables, includ-
INg @, vy, I, and I, that
represent a .
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Bayes’ Consistent Models

Probabilistic sensor fusion

—<—  P(2) - latent feautures
P(2) - conditioning
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requires
to Integrate over e
known variables, includ- Decisions depend on
INg @, vy, I, and I, that and may
represent a . thus change.
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Time Series Classification

ROC Curves

Navig. vs. Aud.
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Left vs. Right
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Synthetic
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More Results
Expected feature values

cond. Spindle cond. Synthetic cond. Navig. vs. Aud.
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Variational Kalman Filter

The logarithmic model evidence for a window of size N is

log(p(Dx)) = log( [ 1] [ ] pwnaay
P(Wn|wn—1, \I)P(yaltwn, 6, dwndwn 1 |p(Na, B)d)).

This is (need Rauch Tung Striebel smoother)
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Variational Kalman Filter

The logarithmic model evidence for a window of size N is

log(p(Dn)) = log<Lﬂ[/wnl /wnp(wn—lan—l)

P(Wn|Wn 1, \T) P (100, b, ) dwpdrwn 1 |p(A e, B)dA).

This is (need Rauch Tung Striebel smoother)
Plug in distributions and integrate over w,,_1:

og(p(Dx) = tog( | ﬂl [ oy

x exp(—0.5(wy, — Wp_1)" L

>< dwn}

P\ @) gy
X I‘(a))\ exp( B)\)d)\)
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_ower Bounds

N T
log(P(yn|@p, wn)) > — (20 ;)d)nw” — log(2) — 10g<COSh(%))
tanh(%) ¢£wn 2 2
_ 4€n 9 i gn
back to vkf
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_ower Bounds

T
log(P(yYn|®p, wn)) > — (2un ~ ;)¢n = - log(2) — log(cosh(%))
tanh(%) ¢£wn 2 2
_ 4€n 9 i gn
d 1

—0.5log |[A;Y, + A7

1V

—log A — §log\VA;1—I—I\

(A —v)tr(vI + A,) 70,

DN | = DD

back to vkf
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_ower Bounds

2yn —1 ¢£wn gn
108 (P(pal by wa)) >~ C0n = DPnn op () tog(cosh($)
2
tanh(%") ol w, e
A€, 2 "
1 -1 d 1 1
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1
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back to vkf
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