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� Motivation of Probabilistic Concepts

� BCI, current practice & shortcomings

� Probabilistic Kalman Filter

� Adaptive BCI
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Probabilistic Motivations

Thomas Bayes (1701 - 1763)
Learning from data using a
decision theoretic framework

First consequence: we
must revise beliefs ac-
cording to Bayes theorem

, where

.

Second consequence: De-
cisions by maximising ex-
pected utilities
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Brain Computer Interface

Computer is controlled directly by cortical activity.
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Classification of BCIs

(mostly motor tasks)
involuntary events (P300)voluntary control

Scalp EEG intracranial EEG

Neural activity

Cognitive events intracranial EEG � � high spatial

and temporal resolution; highly inva-

sive!; allows 2-d control of artificial

limb.

surface EEG � � low spatial and

temporal resolution; no permanent in-

terference with patient; slow! at most

20 bit per minute and task.

� � focus on BCI’s based on scalp recordings.

� � low bit rates; last resort if no other communica-

tion possible
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BCI with almost no adaptation

� P

�� �

based: L. A. Farwell and E. Donchin, � �

User intention is embedded within a sequence of
symbols. The correct symbol leads to “surprise”
and triggers a P

�� �

.

� Filter & threshold: N. Birbaumer etal. , � �

threshold slow cortical potentials; J.R. Wolpaw
etal., � � threshold moving average in an
appropriate pass band e.g. �-rhythm.

These principles rely mostly on user training.
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BCI & static pattern recognition

� Extract representation of EEG “waveforms” (e.g.
low pass filtered time series; spectral
representation)

� Parameterize supervised classification implicitly
assuming stationarity.

What if
Technical setup changes during operation?

(e.g. electrolyte changes impedance)
User learns from feedback?
User shows fatigue?

Assuming stationarity must be wrong !

� � Probabilistic method for “adaptive” BCI.
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Probabilistic Kalman Filter
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stantaneous” generalization error for
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Adaptive BCI
by variational Kalman filtering.
BCI: data driven prediction of cognitive state from EEG measurements.

Working hypothesis: EEG dynamics during a cognitive task are subject to

temporal variation (learning effects, fatigue ...)

Represent EEG segments by z-transformed reflection coefficients.

Mutual information, adaptive method and identical “stationary” model.
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Communication Bandwidth
bit rates � � ��� � [bit/s]

task vkf vsi

���	 
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Gene discovery
Discovering “important” genes (or proteins) from

microarray datasets can be classified as

� Identification of all differentially expressed
genes.

� Identification of reliable (sets) of marker genes.

Current practise for the first: classical methods (e.g.
t-test on differences of means) or probabilistic
approaches with one indicator variable for each gene.

The second is typically done by conventional feature
subset selection. As a result we obtain a set of genes
that was found by heuristic search.
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Bayesian Marker Identification
Missing in FSS: How good are other explanations?

Interpret microarray data as classification problem of
“genetic” regressors w.r.t. a discrete response.

� � Bayesian variable selection provides this
information. However: hopeless, unless we constrain
the dimensionality.

Simplified attempt: � � Find distribution over
individual genes.

Probabilities result from the marginal likelihood of
each model.

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �� � 	
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DAG for Marker Identification
I
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Inference can be done by a variational method
(systematic error) or by sampling (random error). The
latter allows to integrate over analytically and we
draw from and only.
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Asymptotic Behaviour
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Comparison with ML
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Results differ since Bayesian model posteriors take
“complexity” (ref. Hochreiter’s “flat minima”) into
account.
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Selection and Gen. Accuracy

Most probable regressors
selected at a

�
�

� �

threshold

Acc. no. description

� �� �� �

Colon Cancer (Alon et. al.)

Z50753 Uroguanylin 0.76

R87126 Myosin 0.21

M63391 desmin gene 0.01

M36634 vasoact. pept. 0.01

Leukaemia (Golub et. al.)

X95735 Zyxin 0.93

M55150 FAH Fumarylac. 0.05

M27891 CST3 Cystatin C 0.01

Generalization accuracy

Dataset B. probit “indifference”

Colon 84% 74% to 94%

Leukaemia 88% 91% to 96%

No “better” results in literature � 	

confirms model.

Biology confirms Uroguanylin (cell

apoptosis) as important in colon can-

cer development.

But: Meaning of the prob-
abilities?
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Discussion
Quoting

� � � �
� � -closed model selection

with zero-one utility.

Our approach should assume an -open scenario.
Under asymptotic normality,

� � � � � �

degenerates on
��� � �

that minimizes�
	 ��� ��
�� ���� � �	 �� �� 
 � �� 	 �� � 
� � �� � ).

If the predictive distribution of a new observation is of
interest, B&S’s suggest to use a logarithmic score
function for -open model comparison.

��� � � � ��� � ��� 	
� � � �� � �� �

(e.g. cross validation estimate, still to be done)
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A simple idea:
the world is one probabilistic model.

� Applications often require hierarchical structure:
a feature extraction part and a probabilistic
model.

� Classical approach: treat both parts separately
and thus regard features as sufficient statistic of
the data. � � Features are deterministic
variables.

� Our suggestion: treat such hierarchical settings as
one probabilistic model. � � Feature extraction
is a representation in a latent space.
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Bayes’ Consistent Models
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Time Series Classification
ROC Curves
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More Results
Expected feature values
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Variational Kalman Filter
The logarithmic model evidence for a window of size

�

is

��� � �	 � ��� � � � �� � �
�

�
�� �

�

 	
 � 
 	

	 �
 �
� � � � �
� � �

	 �
 � ��
 �
� ��� �� � � �� � � 
 � � � � � � 
 � � 
 �
� �
�	 � � ��� � � � � � �

�

This is not a probabilistic structure! (need Rauch Tung Striebel smoother)

Plug in distributions and integrate over :
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Lower Bounds
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back to vkf
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