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Abstract— In this paper we report about an
investigation in which we studied the proper-
ties of Bayes’ inferred neural network classi-
fiers in the context of outlier detection. The
problem of misclassification due to outliers
in the test data is seen as a serious prob-
lem in safety critical environments. We com-
pare the usual way to deal with uncertainty
in the Bayesian framework with a new ap-
proach based on the variance of the output
layer activations and investigate the utility
of both methods for outlier detection. The
properties of both methods are visualized on
a simple two dimensional classification prob-
lem. An investigation comparing both meth-
ods on some public data-sets with artificially
constructed outlier patterns showed that a
combination of the conventional method and
the method proposed here should be used.
These results where confirmed in a final ex-
periment on real data, where a combination of
both methods showed significantly better per-
formance in rejecting outlying observations.

I. INTRODUCTION

Neural networks are often used in safety-
critical applications for regression or classifica-
tion purpose. Since neural networks are unable
to extrapolate into regions not covered by the
training data (see [S. Roberts et. al.,1994]), one
should not use their predictions in such regions.
Consequently methods for outlier detection got
a lot of attraction. In a recent publication [L.
Tarassenko et. al., 1995] converted a classifi-
cation problem to the problem of marking un-
usual inputs. Classification of tumors in mam-
mograms was solved by marking unusual tissue
for further inspection, a method known as nov-
elty detection.

For conventional classification applications
different methods have been used to be able to
refuse classification of outlying patterns. In [S.

Roberts et. al.,1994] outliers are rejected us-
ing an artificial class “outside” training data.
Class “outlier” is assigned if the probability of
a novel test pattern is largest for this artificial
class. In [N. Schaltenbrand et. al., 1993] an in-
stance based approach was used to represent the
training inputs. The idea to allow for certainty
of decisions based on whether the test input was
well represented in the training data is very im-
portant, especially in a safety critical context
like clinical diagnosis.
Suppose we are given k observations
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as training data, where y; denote the targets
and z; the corresponding inputs. Typical fre-
quentist approaches assume that the test data
is generated by the same distribution p(y,x)
the training data came from. An assumption
which is misleading in many practical applica-
tions. There exist two sources of problems which
may violate this assumption: Random or sys-
tematic errors may occur in the routine phase.
The same is true if the problem is not sufficiently
specified (That is: There exist additional possi-
bilities of classification outcome, not specified in
the training data). Especially the second prob-
lem has caused some prominent blunders !: Us-
ing linear discriminant analysis between teeth
of homo sapiens and chimpanzees [J. Bronowski
et. al., 1951] have tried to identify whether Aus-
tralopithecus africanus is human or ape. Ignor-
ing the possibility of ”outliers” they found agree-
ment with homo but not with ape. Later [C.R.
Rao, 1960] pointed out that using the whole set
of variables,both conclusions are implausible.
To overcome this problem, we should have
knowledge of the whole distribution p(y,z).

!The following example is a quote from [B.D. Ripley,
1996]



Probably the best way to do this is to use
Bayesian inference to determine the model pa-
rameters. Bayesian inference regards the model
parameters itself as random variables. In case of
neural networks the solution is given by a prob-
ability distribution over network weights and bi-
ases.

During evaluation, this distribution over pa-
rameter space leads to predictive distributions
over network outputs. In a classification task
one typically integrates over this distribution,
a method which is also known as marginal-
ization. Test samples from regions with low
density in the training data lead to distribu-
tions with large variance over output activa-
tions. Integration moderates the probabilities
for all classes. Using doubt levels allows to refuse
classifications not only in regions with overlap-
ping class conditional densities but also from re-
gions with low density of training data. This
approach automatically incorporates confidence
into probability estimates, it was used in [D.J.C.
MacKay, 1992b] to get moderated probabilities
for classes in outlying regions. In conjunction
with doubt levels this should prohibit classifica-
tion of outliers. The aim of this paper is to dis-
cuss marginalization and compare it to a method
for outlier detection which uses a variance based
measure. The effects of both methods are visual-
ized using a simple artificial classification prob-
lem. Results of outlier rejection are presented in
the final section.

II. THE BAYESIAN VIEW OF CONFIDENCE

In [D.J.C. MacKay, 1992b] the author uses
Bayesian inference and marginalization to get
moderated probabilities for classes in regions,
where the classifier is uncertain about the class
label. We may expect a trend towards equal
probabilities in such regions and are able to
refuse classification by flagging ”"doubt” if none
of the probabilities is above a certain threshold.
This method will in general lead to a high rate
of correct results among all remaining guesses.
Nevertheless the question arises in which re-
gions of the input space classification is refused.
The second question that should be discussed is,
whether an approach to define an “error-bar” for

classifiers is a possible alternative.

In the following section we assume that the
classifier network is a two layer perceptron and
that it models probabilities for classes. The net-
work has one hidden layer with sigmoid activa-
tion and a linear output layer.

If we look at the well known expression for
the posterior probability for weights, (1), we see,
that the posterior probability depends on both
the prior p(w) and the likelihood term p(D | w).

p(D | w)p(w)
p(D)

The likelihood term will be small for all weight
vectors which do not model the probabilities
for classes properly. Consequently, if we move
in input space in directions from a region with
”large probability for a decision boundary” into
a region with ”large probability for one of the
classes”, we will come into regions far from any
training patterns, where the ”marginalization-
doubt” approach will have troubles to detect
outliers. The reason for this is that all weight
vectors with a large value of p(w | D) will map
these input patterns to large positive or nega-
tive output activations. In other words the mean
value of the predictive distribution of linear net-
work outputs will have large absolute values.

On the other hand [C.K.I. Williams et. al.,
1995] have shown that the standard devia-
tion of the predictive distribution in regression
problems scales approximately proportional to
p(z)~!. Assuming that this relationship holds
also in the case of classification for the linear
output activation, we may conclude that mod-
eration effects will depend on the direction we
move into regions with low input data density
p(x).

In other words: The Bayesian solution de-
scribes an uncertainty of classification decisions.
All regions which are separated from decision
boundaries by a well defined region? with high
probability for one class, are regions with high
certainty of the class label - irrespective whether
training data was available there or not. Hence
the uncertainty about class label introduced by

pw | D) = (1)

2Well defined means with sufficient training data.



the predictive solution is not useful for novelty
detection.

III. ERROR BAR IN THE LATENT SPACE

We have two possibilities to perform novelty
detection:

« Build a model of the input data density p(z)
and assert outlier if the density estimate for a
test input is below a certain threshold.

e Try to find an engineering solution that ap-
proximates the first. This is the method we will
describe here.

In order to make the following part easier to
understand, we will add figure 1, a multi layer
perceptron (MLP) network that shows the rele-
vant details.

Y= logsig(A, )

Fig. 1. A sketch showing a MLP-network with
the correct output transformation for classifica-
tion. The sketch shows all relevant expressions
we need below in order to describe a method ca-
pable of preventing classification in such regions
of input space that were not covered by training
data.

The neural network classifier shown in figure
1, has one hidden layer with sigmoid activation
and a linear output layer. In the two class case
there is only one output node, the output-value
before transformation is denoted with a. The
output values are transformed by an appropri-
ate data model, which requires “logsig” trans-
formation in a two class case and the “softmax”
transformation in a more general one-of-c class
problem. We will use the simple retransforma-
tion, (2), which allows to view the “softmax”
transformation as a k-fold “logsig” transforma-
tion.

1

P(Crl2.D) = 0y

(2)

Ap =ar —In Z exp(ag’)
k/#k

The expression in (2) reduces to the simple logis-
tic transformation in case of a two class problem
with P(C} | z,D) = ﬁp(a) and P(Cy | z,D) =
1—P(Cy | z,D).

It seems obvious to use a measure that is re-
lated to the ”"error bars” commonly used for re-
gression problems (see [D.J.C. MacKay, 1992al).
In this paper we use the standard deviation of
the predictive distribution of network outputs
before applying the final logistic transformation.
In accordance with the terms used in the statis-
tic community, we refer to this as the standard
deviation of the distribution over latent space.
In a two class problem this is simply the stan-
dard deviation o, of
p(a | z,D), where a denotes the linear out-
put activations. In the more general 1-of-
¢ classification problem we have to calculate
the standard deviation for all p(4y | z,D).
The largest standard deviation for any decision,
o4 = max(og)Vk, is finally used as a measure
for uncertainty. This expression only depends
on the distribution of training inputs. A contour
plot of both values, the probability for class and
the standard deviation of the predictive distri-
bution in the latent space is shown in figure 2 for
an artificial three class problem. For the sake of
brevity we will denote this standard deviation
as "retransformed error-bar”.

An upper threshold for the ”retransformed
error-bar” can be used to suppress classification
of outlying patterns.

IV. EXPERIMENTS AND RESULTS

In order to see how the proposed method for
outlier detection compares to the conventional
method, we performed some experiments using
real datasets and artificially generated outliers.
To find out, whether the resulting classifier is
also useful for real problems, we looked at a
biomedical problem, where we aimed at using
an artificial neural network for sleep staging. In
real world scenarios one typically faces the prob-
lem that data are contaminated with samples
not belonging to either specified class. In the
case of sleep staging the rouge data are sam-
ples of movement periods, where the EEG to be
classified into one of six stages shows so called
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Fig. 2. Contour plot of probabilities and the stan-
dard deviation of the predictive distribution of
linear activations and the inputs used during
training. The left sub-plot shows that, depend-
ing on the doubt level, large outlying regions
would be classified as belonging to either class.
On the right side we see that the predictive dis-
tribution over latent space is more reliable in de-
limiting regions with training data. Note that for
reasons of better visualization only parts of the
training patterns were plotted.

movement artifacts. These artifacts are muscle
activity superimposed on to the EEG activity
due to movements of the sleeping subject.

A. Real data and artificial outliers

The experiments were performed with 5 data-
sets provided online by B.D. Ripley. The data
was used throughout his recent book [B.D. Rip-
ley, 1996], a description of the data may be
found there. The experiments are based on
Cushing’s Syndrome data, Virus data, Pima-
Diabetes data, Glass data and on the synthetic
two class data. These data sets cover both prob-
lems with small number of inputs and classes
and such problems, where the number of in-
puts and classes is large. We transformed each
feature in the training data to zero mean and
unit variance. If the inputs are not uncorre-
lated, then the high dimensional input vectors
will have larger norms. As there are only two
outlier samples in Cushing’s Syndrome data and
none in any of the other data, it was necessary
to generate artificial outlier samples.

The generation of artificial outlier vectors was
performed in a way, that in the first step uni-
form distributed data vectors with a length be-
tween one and four were generated as as outly-
ing candidates. To be sure, that the outliers are
from subspaces not covered by training data, we
edited this database. All samples in the outlier
data, where at least one of two nearest neighbors
was a sample in the training data, were removed.
This process is repeated until all samples in the
outlier data fulfill this requirement. A similar
approach was used in [S. Roberts et. al.,1994]
to generate the artificial outlier class. As we
use non whitened training data, the high dimen-
sional problems will contain more outlier pat-
terns in regions between class conditional clus-
ters. The low dimensional problems will contain
more outlier patterns in regions far from deci-
sion boundaries. Therefore the number of cor-
rectly assigned outliers may be used to decide
which type of outlying patterns can be detected
by either approach.

B. Analysis of both methods

The number of hidden units of all neural net-
work architectures used in the experiments were
set to twenty. Similar results were achieved with
networks with five hidden units. The number
of inputs and outputs depend on the data set.
Bayesian inference was performed with R. Neals
hybrid Monte-Carlo algorithm. As we were not
interested in getting any unbiased estimate of
the classification performance, we used all avail-
able training data. The number of recognized
outliers were estimated with a confidence thresh-
old, where 15% of the training data would be
declared outlying. As the necessity of outlier
removal is motivated by the fact that we only
want to classify extremely confident cases, the
doubt threshold was set to 0.9. The follow-
ing table shows as results the number of cor-
rectly removed outliers. We performed three
experiments: In the first we used only the con-
fidence threshold, in the second rejection was
based on the doubt threshold alone, and in the
final experiment both thresholds together were
used to decide upon whether to declare a sam-
ple as an outlier or not. If we compare the re-



TABLE I
PERCENTAGE OF RECOGNIZED OUTLIERS
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Cushing’s Syndrome | 93.4% 49.3% | 97.3%
Pima Diabetes 45.7% 84.4% | 97.0%
Virus 5.7% 91.6% | 93.0%
Glass 14.9% 93.6% | 93.6%
Synthetic 80.2% 22.2% | 86.5%

sults in table I with the dimension of the prob-
lems, we see that there is a strong dependence
of the results on the number of network inputs
and classes. From the way how we generated
the outlier patterns, we may conclude that the
“marginalization-doubt” approach is not a good
way to get rid of outliers in regions far from deci-
sion boundaries, a result which is also illustrated
in figure 2. On the other hand, we see that such
outliers which are in regions between class con-
ditional clusters are not detected by the second
proposed method. To get confident decisions,
both methods should be used in combination.

C. Rejection of movement periods in an all
night sleep stager

The experiments performed so far show that
the method works for artificial problems. In or-
der to see whether this method can also help to
suppress classification of outlying patterns in a
real problem, we look at a phenomenon that oc-
curs during sleep staging. From time to time the
sleeping subject starts moving. The EEG is then
contaminated by muscle artifacts and hence can
not be assigned to one of the six sleep stages.
The number of movement periods is usually very
small and it is impossible to model movements
as a separate class. What we may try, is to reject
movements based on a doubt threshold for the
probabilities, based on an upper threshold for
the variance in the latent space and finally try a
combination of both. In order to cross test the
rejection of movements, we used five classifiers
trained on different training-samples and then

TABLE II
REJECTION OF MOVEMENT PERIODS

both U dbt. cnf.
46.1% 9% | 23.1% | 53.8%
61.5% | 8.1% | 46.1% | 53.8%
38.5% 9% | 46.1% 0%
69.2% 9% | 46.1% | 69.2%
69.2% | 9.3% | 23.1% | 69.2%

looked at the number of rejections of movement
periods.

The results shown in table II suggest that re-
jection based on a variance measure can improve
the overall reliability. Nevertheless one has to
be careful in applying this method. The exper-
iment was designed to give a fair comparison of
both methods and a combination of them. We
started by finding a lower threshold value for the
probabilities for classes and an upper threshold
for the "retransformed error-bar” and used both
thresholds together to reject the movement peri-
ods. The first column in table II shows the per-
centage of correctly rejected movements if the
combined method id used. Both thresholds were
set to a value where each method alone would
reject five percent of all training patterns. The
second column lists the true percentage of train-
ing samples rejected with both thresholds com-
bined. In order to make the comparison fair, we
used the corresponding thresholds when using
both rejection methods separately. The fraction
of movements rejected by the lower doubt level
for probabilities is shown in the third column.
The last column in table II shows the fraction
of movements rejected by an upper threshold for
the "retransformed error-bar” alone.

Further analysis of the results requires to de-
fine precisely, which question we want to ask.
When discussing the different possibilities for
outlier rejection, we asserted that when combin-
ing both the classical and the proposed method,
the classification results should be more reliable
compared to the standard “marginalization-
doubt” approach. This allegation requires to
compare the number of correctly detected move-
ments in column “both” with the number of cor-



rectly detected outliers in the third column. Us-
ing a t-test, we got a significantly higher relia-
bility of the combined method at a significance
level of 4.04% 3. If we allow moderate signif-
icance levels (5%), then we may conclude that
using outlier detection based on a combination
of both rejection measures is more reliable than
relying on moderation effects alone.

When looking at the numbers in table II
and at the result of the test, it becomes clear
that both methods together are better than one
method alone. Nevertheless the results suggest
that the problem of confident decisions is a dif-
ficult one. Relying on the combination of both
methods one risks in the worst case as many as
60% missed rejections.

V. CONCLUSION

From our investigations we may conclude that
a combined method for outlier detection should
be used if classification decisions are only al-
lowed in regions covered by training data. The
well known ”"marginalization-doubt” approach is
a good method to get rid of all probable wrong
decisions in regions between class conditional
clusters, the ”error-bar” like approach is better
in outlying regions which are not close to any
decision boundary.

The work presented here raised several prob-
lems that remain to be investigated. The first
problem is the problem of proper setting the
threshold level for the ”retransformed error-
bar”. If this is done on the worst sample in the
training set, then one risks that this is too small
if outliers are present in the training data. We
could do so when using robust methods during
model inference. Finally the method needs to be
compared with methods based on the probabil-
ity density function over input data, which could
be done by using classification in the sampling
paradigm.
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