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Abstract

In this paper we will treat input selection for a radial basis function
(RBF) like classifier within a Bayesian framework. We approximate
the a-posteriori distribution over both model coefficients and input
subsets by samples drawn with Gibbs updates and reversible jump
moves. Using some public datasets, we compare the classification
accuracy of the method with a conventional ARD scheme. These
datasets are also used to infer the a-posteriori probabilities of dif-
ferent input subsets.

1 Introduction

Methods that aim to determine relevance of inputs have always interested re-
searchers in various communities. Classical feature subset selection techniques,
as reviewed in [DK82], use search algorithms and evaluation criteria to determine
one optimal subset. Although these approaches can improve classification accuracy,
they do not explore different equally probable subsets. Automatic relevance deter-
mination (ARD) is another approach which determines relevance of inputs. ARD
is due to [Nea96] who uses Bayesian techniques, where hierarchical priors penalize
irrelevant inputs.

Our approach is also “Bayesian”: Relevance of inputs is measured by a probability
distribution over all possible feature subsets. This probability measure is deter-
mined by the Bayesian evidence of the corresponding models. The general idea was
already used in [PS96] for variable selection in linear regression models. Though our
interest is different as we select inputs for a nonlinear classification model. We want
an approximation of the true distribution over all different subsets. As the number
of subsets grows exponentially with the total number of inputs, we can not calculate
Bayesian model evidence directly. We need a method that samples efficiently across
different dimensional parameter spaces. Besides the jump diffusion sampler from
[GM94] and the product space approach from [CC95], the most general method that
can do this is the reversible jump Markov chain Monte Carlo sampler (reversible
jump MC) recently proposed in [Gre95]. The approach was successfully applied
by [RG97] to determine a probability distribution in a mixture density model with
variable number of kernels and in [HM98] to sample from the posterior of RBF
regression networks with variable number of kernels. A Markov chain that switches



between different input subsets is useful for two tasks: Counting how often a par-
ticular subset was visited gives us a relevance measure of the corresponding inputs;
For classification, we approximate the integral over input sets and coefficients by
summation over samples from the Markov chain.

The next sections will show how to implement such a reversible jump MC and
apply the proposed algorithm to classification and input evaluation using some
public datasets. Though the approach could not improve the MLP-ARD scheme
from [Nea96] in terms of classification accuracy, we still think that it is interesting:
We can assess the importance of different feature subsets which is different than
importance of single features as estimated by ARD.

2 Methods

The classifier used in this paper is a RBF like model. Inference is performed
within a Bayesian framework. When conditioning on one set of inputs, the pos-
terior over model parameters is already multimodal. Therefore we resort to Markov
chain Monte Carlo (MCMC) sampling techniques to approximate the desired pos-
terior over both model coefficients and feature subsets. In the next subsections we
will propose an appropriate architecture for the classifier and a hybrid sampler for
model inference. This hybrid sampler consists of two parts: We use Gibbs updates
([GG84]) to sample when conditioning on a particular set of inputs and reversible
jump moves that carry out dimension switching updates.

2.1 The classifier

In order to allow input relevance determination by Bayesian model selection, the
classifier needs at least one coefficient that is associated with each input: Roughly
speaking, the probability of each model is proportional to the likelihood of the most
probable coefficients, weighted by their posterior width divided by their prior width.
The first factor always increases when using more coefficients (or input features).
The second will decrease the more inputs we use and together this gives a peak
for the most probable model. A classifier that satisfies these constraints is the so
called classification in the sampling paradigm. We model class conditional densities
and together with class priors express posterior probabilities for classes. In neural
network literature this approach was first proposed in [Tr̊a91]. We use a model that
allows for overlapping class conditional densities:

p(x|k) =
D∑

d=1

wkdp(x|Φd) , p(x) =
K∑

k=1

Pkp(x|k) (1)

Using Pk for the K class priors and p(x|k) for the class conditional densities, (1)
expresses posterior probabilities for classes as P (k|x) = Pkp(x|k)/p(x). We choose
the component densities, p(x|Φd), to be Gaussian with restricted parametrisation:
Each kernel is a multivariate normal distribution with a mean and a diagonal co-
variance matrix.For all Gaussian kernels together, we get 2∗D ∗ I parameters, with
I denoting the current input dimension and D denoting the number of kernels.
Apart from kernel coefficients, Φd, (1) has D coefficients per class, wkd, indicat-
ing the prior kernel allocation probabilities and K class priors. Model (1) allows to
treat labels of patterns as missing data and use labeled as well as unlabeled data for
model inference. In this case training is carried out using the likelihood of observing
inputs and targets:

p(T ,X|Θ) = ΠK
k=1Π

Nk
nk=1Pkpk(xnk

|Θk)ΠM
m=1p(xm|Θ), (2)



where T denotes labeled and X unlabeled training data. In (2) Θk are all coefficients
the k-th class conditional density depends on. We further use Θ for all model
coefficients together, nk as number of samples belonging to class k and m as index
for unlabeled samples. To make Gibbs updates possible, we further introduce two
latent allocation variables. The first one, d, indicates the kernel number each sample
was generated from, the second one is the unobserved class label c, introduced
for unlabeled data. Typical approaches for training models like (1), e.g. [GJ94]
and [SS95], use the EM algorithm, which is closely related to the Gibbs sampler
introduce in the next subsection.

2.2 Fixed dimension sampling

In this subsection we will formulate Gibbs updates for sampling from the posterior
when conditioning on a fixed set of inputs. Figure 1 shows the directed acyclic
graph (DAG) that illustrates the conditional independence structure introduced by
these latent variables. It also contains prior specifications that follow largely the
settings of [RG97].

For all but the kernel variances, we know how to specify reasonable priors. Hence a
worth mentioning detail in figure 1 is that we use a hierarchical prior specification
for the inverse kernel variances. In order to allow the hyper parameter β to evolve,
it has a hyper prior, controlled by the two hyper hyper parameters g and h.

According to [GRe96], Gibbs sampling is a special case of single component
Metropolis Hastings updates, where the proposal distribution is the full conditional1
of the updated parameter. Hence invariance of the target distribution is guaranteed
by the detailed balance condition met by all Metropolis Hastings samplers. In order
to allow sampling from the full conditional, we have to choose priors over coefficients
from their conjugate family:

• Each component mean, md, is given a Gaussian prior: md ∼ Nd(ξ, κ).

• The inverse variance of input i and kernel d gets a Gamma prior:
σ−2

id ∼ Γ(α, βi).

• All d variances of input i have a common hyperparameter, βi, that has
itself a Gamma hyperprior: βi ∼ Γ(g, hi).

• The mixing coefficients, wk, get a Dirichlet prior: wk ∼ D(δw, ..., δw).

• Class priors, P , also get a Dirichlet prior: P ∼ D(δP , ..., δP ).

The quantitative settings are similar to those used in [RG97]: Values for α are
between 1 and 2, g is usually between 0.2 and 1 and hi is typically between 1/R2

i
and 10/R2

i , with Ri denoting the i’th input range. The mean gets a Gaussian
prior centered at the midpoint, ξ, with diagonal inverse covariance matrix κ, with
κii = 1/R2

i . The prior counts δw and δP are set to 1 to give the corresponding
probabilities non-informative proper Dirichlet priors.

The Gibbs sampler uses updates from the full conditional distributions in (3). For
notational convenience we use Θk for the parameters that determine class condi-
tional densities. We use m as index over unlabeled data and cm as latent class label.
The index for all data is n, dn are the latent kernel allocations and nd the number
of samples allocated by the d-th component. One distribution does not occur in
the prior specification. That is Mn(1, ...) which is a multinomial-one distribution.
Finally we need some counters: m1 ... mK are the counts per class and m1k .. mDk

1We condition on the current values of all other coefficients occurring in the model.
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Figure 1: This is the directed acyclic graph of the model including all hyper pa-
rameters. Latent (unobserved) variables are shown as circles, observed variables are
shown as squares. What we see is that the latent allocation variable d makes the
samples conditionally independent from the allocation probabilities. This “trick”
allows Gibbs sampling. Without this variable, we would have to use Metropolis-
Hastings like sampling for the entire model.



count kernel allocations of class-k-patterns. The full conditional of the d-th kernel
variances and the hyper parameter βi contain i as index of the input dimension.
There we express each σ−2

i,d separately. In the expression of the d-th kernel mean,
md, we use V d to denote the entire covariance matrix.

p(cm|...) = Mn

(
1,

{
Pkp(xm|Θk)∑
k Pkp(xm|Θk)

, k = 1..K

})
(3)

p(dn|...) = Mn

(
1,

{
wtndp(xn|Φd)∑
l wtndp(xn|Φd)

, d = 1..D

})

p(β
i
|...) = Γ

(
g + Dα, hi +

∑

d

σ−2
d,i

)

p(wk|...) = D (δw + m1k, ..., δw + mDk)
p(P |...) = D (δP + m1, ..., δP + mK)

p(md|...) = N (
(ndV

−1
d + κ)−1(ndV

−1
d x̄d + κξ), (ndV

−1
d + κ)−1

)

p(σ−2
i,d |...) = Γ


α +

nd

2
, βi +

1
2

∑

xn∀n|dn=d

(xn,i −md,i)
2




2.3 Moving between different input subsets

The core part of this sampler are reversible jump updates, where we move between
different feature subsets. The probability of a feature subset will be determined by
the corresponding Bayesian model evidence and by an additional prior over number
of inputs. In accordance with [PS96], we use the truncated Poisson prior:

p(I) = 1/

(
Imax

I

)
c
λI

I!
, where c is a constant and Imax the total nr. of inputs.

Reversible jump updates are generalizations of conventional Metropolis-Hastings
updates, where moves are bijections (x, u) ↔ (x′, u′). For a thorough treatment we
refer to [Gre95]. In order to switch subsets efficiently, we will use two different types
of moves. The first consist of a step where we add one input chosen at random and a
matching step that removes one randomly chosen input. A second move exchanges
two inputs which allows “tunneling” through low likelihood areas.

Adding an input, we have to increase the dimension of all kernel means and diagonal
covariances. These coefficients are drawn from their priors. In addition the move
proposes new allocation probabilities in a semi deterministic way. Assuming the
ordering, wk,d ≤ wk,d+1:

δp = Beta(ba, bb + I)

∀d ≤ D/2

{
w′k,D+1−d = wk,D+1−d + wk,dδp

w′k,d = wk,d(1− δp)
(4)

The matching step proposes removing a randomly chosen input. Removing corre-
sponding kernel coefficients is again combined with a semi deterministic proposal
of new allocation probabilities, which is exactly symmetric to the proposal in (4).



Table 1: Summary of experiments

Data avg(#) max(#) RBF (%,na) MLP (%,nb)
Ionosphere 4.3 9 (91.5,11) (95.5,4)

Pima 4 7 (78.9,11) (79.8,8)
Wine 4.4 8 (100, 0) (96.8,2)

We accept births with probability:

αb = min(1, lh. rt.× p(I + 1)
p(I)

(
1
R′
√

2π

)D ∏

D

exp
(
−0.5

1
R′2 (µ′d − ξ′d)

2

)

×
(

β
′α

Γ(α)

)D ∏

D

(σ
′−2
d )α−1 exp(−β′σ

′−2
d )

× dm/(I + 1)
bm/(Imax − I)

× 1
(

1
R′
√

2π
)D ∏

D exp
(
−0.5 1

R′2
(µ′d − ξ′d)2

)

× 1(
β′α
Γ(α)

)D ∏
D(σ

′−2
d )α−1 exp(−β′σ

′−2
d )

). (5)

The first line in (5) are the likelihood and prior ratio. The prior ratio results from
the difference in input dimension, which affects the kernel means and the prior over
number of inputs. The first term of the proposal ratio is from proposing to add
or remove one input. The second term is the proposal density of the additional
kernel components which cancels with the corresponding term in the prior ratio.
Due to symmetry of the proposal (4) and its reverse in a death move, there is no
contribution from changing allocation probabilities. Death moves are accepted with
probability αd = 1/αb.

The second type of move is an exchange move. We select a new input and one
from the model inputs and propose new mean coefficients. This gives the following
acceptance probability:

αc = min(1, lh. ratio×
(

1
R′
√

2π
)D ∏

D exp
(
−0.5 1

R′2
(µ′d − ξ′d)

2
)

(
1

R′
√

2π
)D ∏

D exp
(
−0.5 1

R′2
(µd − ξd)2

) (6)

× cm/I

cm/(Imax − I)
×

∏
D N (µd|...)∏
D N (µ′d|...)

).

The first line of (6) are again likelihood and prior ratio. For exchange moves, the
prior ratio is just the ratio from different values in the kernel means. The first term
in the proposal ratio is from proposing to exchange an input. The second term is the
proposal density of new kernel mean components. The last part is from proposing
new allocation probabilities.

3 Experiments

Although the method can be used with labeled and unlabeled data, the following
experiments were performed using only labeled data. For all experiments we set



α = 2 and g = 0.2. The first two data sets are from the UCI repository2. We use
the Ionosphere data which has 33 inputs, 175 training and 176 test samples. For
this experiment we use 6 kernels and set h = 0.5. The second data is the wine
recognition data which provides 13 inputs, 62 training and 63 test samples. For this
data, we use 3 kernels and set h = 0.28. The third experiment is performed with
the Pima data provided by B. D. Ripley3. For this one we use 3 kernels and set
h = 0.16.

For all experiments we draw 15000 samples from the posterior over coefficients and
input subsets. We discard the first 5000 samples as burn in and use the rest for
predictions. Classification accuracy, is compared with an MLP classifier using R.
Neals hybrid Monte Carlo sampling with ARD priors on inputs. These experiments
use 25 hidden units. Table 1 contains further details: avg(#) is the average and
max(#) the maximal number of inputs used by the hybrid sampler; RBF (%, na) is
the classification accuracy of the hybrid sampler and the number of errors it made
that were not made by the ARD-MLP; MLP(%, nb) is the same for the ARD-MLP.
We compare classifiers by testing (na, nb) against the null hypothesis that this is an
observation from a Binomial Bn(na +nb, 0.5) distribution. This reveals that neither
difference is significant. Although we could not improve classification accuracy on
these data, this does not really matter because ARD methods usually lead to high
generalization accuracy and we can compete.

The real benefit from using the hybrid sampler is that we can infer probabilities
telling us how much different subsets contribute to an explanation of the target
variables. Figure 3 shows the occurrence probabilities of feature subsets and fea-
tures. Note that table 1 has also details about how many features were used in
these problems. Especially the results from Ionosphere data are interesting as on
average we use only 4.3 out of 33 input features. For ionosphere and wine data the
Markov chain visits about 500 different input subsets within 10000 samples. For
the Pima data the number is about 60 and an order of magnitude smaller.

In a final experiment we applied the proposed approach to different features ex-
tracted from all night sleep EEG. The idea is thus to map biosignals that are
recorded during the night to three probabilities for events wake, REM and deep
sleep. Within the project it was decoded to evaluate which preprocessing tech-
niques should be used during preprocessing. The features were evaluated on four
selected recordings of the SIESTA database4. The classification inputs have been
obtained for each second of the entire night using an overlapping window of 2 sec-
onds length. According to the project aim, we aim at predicting Rechtschaffen &
Kales (R & K) stages wake, REM and deep sleep.

The following preprocessing algorithms have been used5:

• Power spectral density and coherence function estimates claculated by uis-
ing fast Fourier transform (FFT). Both methods provide 9 estimates ob-
tained by smoothing over 9 different frequency bands.

2Available at http://www.ics.uci.edu/ mlearn/MLRepository.html.
3Available at http://www.stats.ox.ac.uk
4At the time when this subset selection has been performed, more recordings have not

been available.
5I would like to express gratitude to those who provided the feature estimates. The

FFT based features have been calculated by P. Rappelsberger and O. Filz. The Kalman
filter AR-coefficients have been provided by A. Schloegl. The Hjorth coefficients have been
obtained from A. Varri and M. Koivuluoma. Finally the stochastic complexity has been
provided by I. Rezek and S. Roberts.
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Figure 2: Probabilities of inputs and input subsets measuring their relevance.

• Auto regressive filter (AR)-coefficients estimated via Kalman filtering. The
Kalman filter was implemented for a 10-th order AR-model.

• Three Hjorth complexity measures and a nonlinear combination of those.
• A Stochastic complexity measure.
• Coefficients obtained from a 10-th order lattice filter AR model.

The difficulty of this FSS was that the algorithms used different window lengths.
Together with the 30 seconds based R&K scorings, this means that features can not
be compared in the first place: Features with longer windows will be preferred. In
order to avoid that longer windows are an advantage, we decided to run the FSS
with the median segment of each 30 seconds epoch. Resampling to equal priors, we
get 546 samples.

The Bayesian wrapper was used with data from electrode C3 only. This reduces
the total number of available features to 43. After drawing 10000 samples from the
a-posteriori distribution of model coefficients and different dimensions, we discarded
the first 5000 samples as burn in. The probabilities of feature subsets observed in
the remaining samples are plotted in figure 3. The most probable feature subset
found in this evaluation has a probability of Pmp = 0.698. The feature variables
contained in the subset are listed in table 2.

As a final remark it seems importamt to mention that the result suggested by the
Bayesian technique is comparable to the result reported in [SRR+99]. In [SRR+99]
conventional search algorithms and feature evaluation criteria have been used to-
gether with a statistical hypothesis test to determine the optimal subset. The results
reproted there suggest that between 2 and 3 features suffice. Both the complexity
measures and the reflection coefficients are reported to be the most useful ones for
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Table 2: Most probable feature subset at electrode C3

Bayesian reflection coefficient 1
Bayesian reflection coefficient 3

Hjorth coefficient, cmplx./(act. * mob.)

classifying sleep.

4 Summary

In this paper we have evaluated a hybrid sampler that uses Gibbs updates and
reversible jump moves to approximate the a-posteriori distribution over parameters
and input subsets in nonlinear classification problems. The classification accuracy
of the method could compete with R. Neals MLP-ARD implementation. However
the real advantage of the method is that it provides us with a relevance measure of
feature subsets. This allows to infer the optimal number of inputs and how many
different explanations the data provides.

The algorithm was applied to feature subset selection in a sleep classification task.
We found the Bayesian reflection coefficients as most useful ones. The result sug-
gests that instead of extracting 10 coefficients it suffices to extract the first 3 coef-
ficiets.
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