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Kurzfassung der Dissertation

Diese Dissertation beschäftigt sich mit der Frage inwieweit Bayes’sche In-
ferenz geeignet ist, die Zuverläßigkeit von biomedizinischen Diagnosanwen-
dungen zu verbessern. Die Arbeit geht im wesentlichen davon aus, daß
Biosignale, die in Form einer oder mehrerer parallel aufgezeichnter Zeitrei-
hen vorliegen, klassifiziert werden sollen. Als Beispielanwendung wird auf das
Problem einer Schlafanalyse eingegangen, bei der EEG-Signale klassifiziert
werden. Die Arbeit untersucht 4 Teilaspekte einer derartigen Diagnosean-
wendung.

Zunaechst wird der Bayes’sche Ansatz verwendet um Modellkoeffizien-
ten eines autoregressiven Modells zu schätzen. Dabei wird auch auf die
Schätzung der Modellordnung eingegengen. In einem Experiment wird un-
tersucht, ob sich die Modellwahrscheindlichkeiten als Maß zur Erkennung
von Artefakten im EEG eignen.

Im darauf folgenden Kapitel wird das Problem der Merkmalsauswahl
vom Bayes’schen Standpunkt aus betrachtet. Es wird ein Algorith-
mus vorgestellt, der in der Lage ist verschiedene Input-Kombinationen
mit Wahrscheindlichkeiten zu versehen, die aussagen, wie viel die unter-
schiedlichen Input-Kombinationen zur Lösung des Problems beitrgen. Zur
Modellschaetzung werden Markov chain Monte Carlo (MCMC) Techniken
eingesetzt. Der Algorithmus wird im Zusammenhang mit der erwähnten
Schlafanalyse, zur Bewertung verschiedener Vorvererbeitungsmethoden
eingesetzt.

In Kapitel 6 wird zur Klassifikation ein generatives Modell eingesetzt. Das
Modell wird mittels Bayes’scher Inferenz geschätzt, wobei eine analytische
Approximation mittels Mean-Field-Techniken berechnet wird. Der Ansatz
wird eingehend untersucht, wobei insbesondere auf die richtig Bestimmung
der Modellordnung und die Generalisierungs-Performanz eingegengen wird.

Kapitel 7 erweitert die klassische Vorgangsweise aus Kapitel 6. Der in
Kapitel 7 vorgestellte Ansatz strebt eine optimale Integration von Vorver-
arbeitungsmethoden und Klassifikation an. Diese optimale Integration wird
erreicht, indem Vorverarbeitung und Klassifizierung zu einem gemeinsamen
Wahrscheindlichkeitsmodell zusammengefaßt werden. Der resultierende Al-
gorithmus bewirkt, daß Informationen entsprechend ihrer Zuverlässigkeit zu
einer Entscheidung zusammengefaßt werden (“sensor fusion”). Das dabei
verwendete Modell hat Ähnlichkeit mit dem bekannten Hidden-Markov-
Modell. Die Inferenz erfolgt wiederum mittels MCMC Techniken. Auch
diese Methode wird an Hand der Schlafanalyse evaluiert.



Abstract

This thesis investigates whether Bayesian inference can improve the reliability
of biomedical diagnosis. In particular we discuss time series classification as
is for example needed for an analysis of all-night sleep EEG recordings. Such
an attempt needs 4 steps that are further analyzed.

First we must preprocess the raw data. In this thesis we suggest for that
step a Bayesian analysis of an autoregressive lattice filter model. We are
especially interested in model selection, and, whether the model probabilities
are viable means for artifact detection in EEG signals.

The subsequent chapter treats feature subset selection within the
Bayesian framework. We infer the probabilities of differet feature subsets,
which tell us in how far each of the subsets contributes to the classification.
Inference of the classifier is done with Markov chain Monte Carlo (MCMC)
techniques. Changing feature subsets requires to sample accross models with
different numbers of inputs, which is done with a reversible jump MCMC
sampler. This approach is used to assess the importance of different prepro-
cessing techniques as inputs for sleep analysis.

The last topic that is treated in this thesis is the classification stage. In
chapter 6 we use variational approximations to derive a Bayesian posterior
over model coefficients and different model orders. The classifier is used to
build a sleep analyzer, where a lot of emphasis was put on model selection.

The final chapter proposes an improvement of the classical approach that
was followed so far. By using one probabilistic model that unifies prepro-
cessing and classification, we obtain a classifier that, in the sense of relying
more on reliable information, performs optimal sensor fusion. The proposed
classifier is similar to the well known hidden Markov model. Inference is per-
formed with MCMC techniques. The proposed architecture is again applied
to sleep analysis.
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Chapter 1

Introduction

The background for the ideas of this thesis is biomedical signal analysis.
In such domains, especially when the methods are applied to diagnosis or
monitoring of humans, wrong decisions are often associated with extremely
high cost. In the worst case we might even risk someone’s life. On the other
hand it is impossible that decisions are always correct. Hence there is a large
interest in understanding the models that are used in such decision processes.
Furthermore we aim at techniques that allow separating cases where decisions
can be made with high confidence from those where we expect high risk
of misclassification. The methods discussed in this thesis aim at optimal
inference in an uncertain scenario. We are interested to apply techniques
that are based on a framework that is believed to render optimal behaviour.
Unfortunately there are competing “theories” that might guide our analysis
and we have to decide for one of them. In this work all methods have been
developed under the Bayesian paradigm. We provide a Bayesian analysis of
4 different methods that are usually applied during classifying of large time
series. We develop algorithms for preprocessing, feature subset selection1,
static classification and sensor fusion. All techniques are treated within the
Bayesian framework. The algorithms are applied to various synthetic and
benchmark datasets. However, the major application treated throughout
this thesis is an analysis of all night sleep EEG recordings. These sleep data
were recorded within the EC funded project SIESTA. The code developed
for preprocessing (chapter 4) and for classification (chapter 6), is a major
part of the SIESTA analyzer.

The Bayesian choice is motivated by many successful applications of
Bayesian inference in the biomedical domain (see e.g. [GJRL98], [SBGI96]
and [SDRZ98]). Although Bayesian methods have often been applied to

1Feature subset selection is the usual terminology. Correctly speaking we sum the
contributions of different subsets, which are weighted by the subset probabilities.
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CHAPTER 1. INTRODUCTION 8

biomedical problems, there is one aspect we would like to investigate further:
how can Bayesian methods help to obtain reliable decisions? In order to
achieve reliable predictions, we must consider the following issues:

• During inference we must choose model orders (model complexity) ap-
propriately. An appropriatly chosen model complexitly is necessary for
high generalization accuracy. Furthermore any information that is ex-
plicitly or implicitly based on the model order is only meaningful if the
model order is reasonably chosen. An example is reporting which kernel
in a mixture density model has most probably generated a particular
sample.

• The inference process should be insensitive to suboptimal settings of
all parameters that have to be tuned by the user. This allows inference
without having to fine tune the algorithms for each problem separately.
Such insensitivity is achieved by specifying priors hierarchically. Pa-
rameter tuning is often a major problem that causes suboptimal results.
The usual approach is to use a separate validation set and cross vali-
dation. This has several major dissadvantages: a) In cases where data
are rare paremeter inference would profit from additional samples; b)
The optimal parameters for the problem of interest are often deter-
mined in a trial and error fashion; c) Last but not least we must view
this parameter tuning as a higher level learning task. As such classifier
selection is also subject to learning theoretical bounds [DGL96].

• Using an inferred model for predictions, we face different sources of
uncertainty. As is reviewed in [DR00], we must consider model uncer-
tainty, parameter uncertainty and sometimes also input uncertainty.
Predictions must incorporate all these uncertainties into the resultig
decisions. In the Bayesian paradigm all unobserved variables are con-
sidered to be uncertain. Technically this is done by treating unobserved
quantities as random variables2. The uncertainties about unobserved
quantities will be incorporated into predictions by integrating over the
corresponding distributions.

One of the reasons for the success of the Bayesian methodology is that it
provides means to address all three issues. A point often criticized about the
Bayesian methodology is what [BS94] call the subjectivist view of probabili-
ties. The solution we get (a posterior over some hypothesis space) depends

2Model coefficients are considered to be continuous random variables. Model selection is
treated by allowing for a discrete randoim variable as model indicator. Finally if necessary
inputs can be regarded as random variables as well.
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on the prior that was chosen initially. This criticism however misses the point
in more than one perspective:

• Every method uses some prior. The Bayesian methodology, however,
is the only one that makes the prior explicit. An example is model
selection: whatever method we look at, there is always a “best fit”
versus “complexity” trade off. That is, Akaike’s information criterion
(AIC) (see [Aka74]), minimum description length (MDL) (see [Ris78]),
minimum message length (MML) (see [WF87]) or likelihood ratio tests
as used in frequentist statistics (see [SS71]) all use a prior that prefers
simple models. The same is true for statistical learning theory summa-
rized in [Vap95], where model complexity is constrained by minimizing
the VC dimension of the model. Penalized likelihood, as is used e.g. in
neural network learning - either explicitly as weight decay or implicitly
as early stopping - can also be understood as priors for “small weights”
(e.g. [Bis95]).

• A lot of emphasis can be put on setting up hierarchical priors that avoid
solutions that are sensitive to the prior settings. Excellent examples
are the work in [RG97], who use a hierarchical prior over component
variances in one dimensional Gaussian mixture models and the work in
[AFD00], who make all priors hierarchical.

• In recent years a lot of research has dealt with the issue of setting up
uninformative priors. Rather exciting developments have been made in
developing reference priors (see e.g [BB92]). Loosely speaking, the idea
is to set up a prior such that the information contained in the posterior
distribution about the data is maximized.

• Finally it is quite easy to prove that under some constraints priors are
asymptotically efficient [BS94]. This is meant in the sense that the
influence of the prior vanishes provided the amount of data is large
enough.

However this should not be taken as an argument that setting up priors is an
easy task. A lot of emphasis must be put on analyzing whether the results
are sensitive to the priors chosen. In particular, we always have to bear
in mind that priors, which are uninformative with respect to parameters,
will be informative with respect to model orders. Hence being interested in
model selection, we must keep balance between being uninformative on the
parameter level and being uninformative on the level of alternative models.
Such kind of analysis has been carried out by [RG97] and [Ste97].
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At the end of this introduction we will briefly summarize the contributions
found in subsequent chapters. The next chapter provides an example of time
series classification. The application discussed there is sleep analysis as is
approached in the SIESTA project. We used sleep analysis as a prototypical
problem of biomedical signal analysis to provide a unifying application for
the different methods discussed in the subsequent chapters. Chapter 3 gives
an overview of Bayesian theory and Bayesian methods to an extent that is
necessary to motivate and ground the subsequent analysis.

Chapter 4 will discuss Bayesian preprocessing. We will give an example
of time series analysis with autoregressive (AR)-lattice-filters and prove that
Bayes optimal classifications3 can only be obtained by using a probabilistic
link between preprocessing and classification. We will also derive the poste-
rior probability of a particular lattice filter stage. This probability is useful
for model selection, but we may also interpret it as a reliability measure of
each lattice filter stage, when white noise is considered to be an artefact. A
Bayesian analysis of lattice filter coefficients has not been published before.

The problem of model selection is further dealt with in chapters 5 and
6. In chapter 5 we propose an approach to input subset selection for clas-
sification problems, formulated as Bayesian model selection. The classifier
used in chapter 5 is a generative model. Inference is done with Gibbs up-
dates for within dimensional moves and with reversible jump Markov chain
Monte Carlo updates for dimension changing moves. Together these updates
approximate the posterior over model parameters and feature subsets. At
least asymptotically, the technique will approximate the true posterior. The
algorithm proposed in chapter 5 has been tested using some datasets that
are publicly available. We will also show a result where we explore the pos-
terior distribution over feature subsets using features that were extracted
from sleep EEG data. The material in chapter 5 is an extended version of
[Syk00]. In chapter 6 we discuss model selection for a similar generative
classifier as was used in chapter 5. For reasons of efficiency, the analysis
is based on variational inference. The exact posterior over latent variables
and model coefficients is approximated by a mean field expansion. Although
only approximately correct, we determine probabilities over models by using
the lower bound of the true log evidence provided by such techniques. The
method is applied both to synthetic problems and the mentioned real world
data set, which is concerned with analysis of sleep recordings. It should be
mentioned that the algorithms derived in chapter 6 are the core of the sleep
analyzer developed for the European project SIESTA. Although similar to

3Bayes optimal is meant in terms of minimizing some cost functional, e.g. the misclas-
sification rate.
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the variational analysis of Gaussian mixture models reported in [Att99], a
generative classifier has so far not been analysed by variational approxima-
tions. In chapter 5 we propose a more exact solution. Input subset selection
for classification problems is formulated as Bayesian model selection. The
classifier used in chapter 5 is again a generative model. Inference is done
with Gibbs updates for within dimensional moves and with reversible jump
Markov chain Monte Carlo updates for dimension changing moves. Together
these updates approximate the posterior over model parameters and feature
subsets. At least asymptotically, the technique will approximate the true
posterior. The algorithm proposed in chapter 5 has been tested using some
datasets that are publicly available. We will also show a result where we ex-
plore the posterior distribution over feature subsets using features that were
extracted from sleep EEG data. The material in chapter 5 is an extended
version of [Syk00].

Chapter 7 follows up on the ideas laid out in chapter 4 for the Bayesian
lattice filter. Following the requirement that preprocessing must be Bayesian
in order to allow optimal decisions, we derive a classifier that implements
such a strategy. The method allows for spatial and temporal fusion of the
uncertain information obtained from preprocessing. The model is a classifier
where class labels exhibit a first order Markov dependency. The observation
model assumes class conditional independence of different inputs. This is
what is often referred to as a näıve Bayes model [Rip96]. For each input
the class conditional densities are modeled with a mixture of Gaussians. We
infer the posterior over latent variables and model coefficients. The key idea
to allow for uncertainty of preprocessed features is to treat them as latent
variables, as well. The resulting inference strategy improves classification
accuracy, when the time series to be classified is contaminated with noise.
However, the method can do more: when applied to a contaminated time
series, we observe empirically that the expectations in the latent feature
space are better estimates of the true features4 as are the estimates obtained
from preprocessing alone. An integrated treatment of preprocessing and
classification, as is done in section 7, has not been proposed before.

Chapter 8 provides a summary and a final discussion of the material
presented in this thesis.

4True features refers to estimates obtained from the uncontaminated time series.



Chapter 2

All night sleep analysis

As already mentioned in the introduction, the background for this thesis is
biomedical signal analysis. We are interested in an investigation of different
techniques that are necessary to perform time series classification reliably.
Besides some publicly available benchmark problems and synthetic problems,
the major application that is treated thoroughout this thesis is an automated
analysis of all night sleep EEG recordings. Such an automated sleep analysis
is the aim of the EC funded Biomed project SIESTA1.

The conventional way of analyzing all night sleep is according to the so-
called Rechtschaffen and Kales (R & K) scoring rules that were formulated
in [RK68]. The (R & K) rules define 4 sleep stages (stage 1 to 4) as well
as states for wake and rapid eye movement (REM) sleep. Sleep stage 1 is
light sleep and sleep stage 4 corresponds to deep sleep. Hence there is an
ordering among these 4 sleep stages. REM sleep is an important dream
related event. An example of a R & K hypnogram is found in figure 2.1.
Although many attempts have been made to develop an automatic R &
K sleep stager (e.g. [SDRZ98]), so far all these attempts have not lead to
satisfying performance. Especially when they are applied to subjects with
sleep disturbances, autmated R & K sleep stager will fail. Hence until now
sleep analysis according to R & K scoring rules is still performed manually.
However, even among human experts the inter rater agreement can be very
low.

Rechtschaffen and Kales scoring rules have two major problems:

• The rules allow for subjective interpretations that cause the low inter
rater agreement.

• The rules are defined on short events that are found in the biosignals.
An example are sleep spindles, K-complexes or REM activity. All these

1Project details can e found in the acknowledgements.
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Figure 2.1: This figure shows an example of a Rechtschaffen and Kales hypno-
gram. The rythmicity of this hypnogram is typical for good and relaxing
sleep.

events occur on a 1 second scale, whereas the sleep scorings are based
on segments of 20 or 30 seconds duration. Hence the R & K rules rely
heavily on smoothing. An example is classification of REM sleep, where
the indicators of REM events may be separated by several minutes of
stage 1 sleep. Although this stage 1 sleep does not show any REM
patterns, it will be added to the REM period. Labels that are smoothed
in such a way will be very difficult to model for any automated method.
Unfortunately these smoothing rules were also applied when classifying
the SIESTA recordings.

• The 20 or 30 seconds resolution is too low to pick up short time events
such as micro arousals, that are in the range of one second.

• The ordering among the sleep stages (stage 2 represents sleep that is
closer to deep sleep as is stage 1 etc.), makes correct labeling difficult.
Hence comparing R & K labels from different human experts, we find
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many confusions of “neighbouring” stages.

Both the necessity for smoothing and the low resolution should be elim-
inated if the analysis is based on 1 second epochs. The latter problem is
removed if we give up on predicting all labels and concentrate on wake, deep
sleep (often called delta sleep) and REM sleep. However, we are not inter-
ested in the labels themselves, but in the corresponding probabilities. That
is, the aim of the SIESTA project is to interpret the entire night in terms of
probabilities for (R & K) labels wake, REM sleep and delta sleep. According
to [PRTJ97] this suffices to describe human sleep. This way of approaching
the problem has also the advantage of being automatic and therefore not
allowing for any subjective interpretations.

From the point of view of classification, we have a partially supervised
problem. The labels for the supervised part are taken from segments that
were unanimously classified by three human experts as either wake, REM or
stage 4. Each recording was scored by two independent experts and a third,
who performed the consensus scoring.

The data that were recorded within the SIESTA project are electroen-
cephalogram (EEG), electromyogram (EMG), electrocardiogram (ECG) and
other biosignals. EEG is definitely the main source of information about the
state of a sleeping subject. Therefore the methods presented in this thesis
were only applied to EEG, which was recorded according to the international
10-20 system at electrode positions Fp1, C3, O1, Fp2, C4 and O2.



Chapter 3

Bayesian inference

This chapter reviews important aspects of Bayesian inference. The first sec-
tion provides a motivation for using the Bayesian paradigm to solve decision
problems in uncertain environments. The five axioms and some important
propositions presented there are known material, as e.g. provided by [BS94].
Although known, it is of particular importance to include this fundamental
material: It provides us with a motivation for both the representation of be-
liefs (or uncertainties) by probabilities and the Bayesian inference principle
used throughout this thesis. Hence all decisions taken in subsequent sections
are justified theoretically.

The second section in this chapter reviews important practical concepts
for a Bayesian analysis. These are techniques used for inference of model
coefficients, predictions and model selection.

3.1 Bayesian foundations

3.1.1 Decision problems and consistent behaving

As summarized in [BS94], Bayesian inference results from an axiomatic
framework that prescribes one principled way how individuals should act
if they want to make decisions in uncertain environments. Behaving in ac-
cordance with these axioms, the decision maker is guaranteed to avoid any
logical inconsistencies. Before we enumerate these axioms, we need to specify
what we consider to be a decision problem.

Definition 3.1.1 (Decision problem) We define a decision problem to
consist of the following elements (E, C, A, ≤), with:

(i) E = {Ω, ∅, Ei, i ∈ I} denoting an algebra of relevant events.

15
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(ii) C = {Cj, j ∈ I} is the set of possible consequences.

(iii) A denotes the set of available actions, aj, where each aj is a func-
tional mapping from partitions of Ω, the certain event in E, to some
consequences cj.

(iv) ≤ is a preference relation between actions.

Discussion of definition 3.1.1

• Opting for an action aj, the decision maker opts for an uncertain sce-
nario. The uncertainty comes in, since opting for an action is equivalent
to opting for a set of uncertain events that lead to corresponding con-
sequences (c1, ..., cn).

• The preference relation among different actions, ≤, depends on the
current state of information of the decision maker. Hence all decisions
are subjective. Two different subjects can act differently without vi-
olating any consistency requirements. Obviously an individual might
change his or her behaviour once additional information is available.
This change of preferences will further be denoted with the conditional
preference symbol ≤G, where G is some additional information.

Apart from the upper definition, we need some additional specifications: We
have to be able to formulate preference statements between consequences.
The statement c1 ≤ c2 means that we do not prefer consequence c1 over
consequence c2. These preference relations among consequences do not de-
pend on the current state of information. Using both preference statements
defined so far, we can formulate an additional preference statement among
uncertain events. If for all consequences c1 and c2, where c1 ≤ c2 we do
not prefer action a1 to action a2 defined as {c1|E, c|Ē} ≤ {c2|F, c|F̄}, then
we do not prefer the uncertain event E to the uncertain event F . Hence
we have introduced a new preference statement between uncertain scenarios:
E ≤ F . The preference statement ≤ can be used to define other binary rela-
tions among consequences, options (or actions) and uncertain events. Such
operations will be used below. However, we will not include these definitions
here. Instead the interested reader is referred to [BS94].

Based on definition 3.1.1 of a decision problem, we can state five ax-
ioms1 that prescribe a way that allows individuals to take their actions in a

1An interesting consequence of this axiomatic framework is that Bayesian’s cannot
argue that other subjects who do not use this inference procedure act in an inconsistent
way. Their actions might be inconsistent with the axioms formulated below. However,
there might be a different axiomatic framework that motivates their behaviour.
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consistent manner when faced with an uncertain scenario.

Axiom 1 (Comparability of consequences and options) :

(i) There exist some consequences c1, c2 and a preference statement, c1 <
c2 that allows us to choose among them.

(ii) There exist some comparable options: Given consequences c1, c2 and
c3 and uncertain events E and F : {c1|E, c2|Ē} ≤ {c1|F, c2|F̄} or
{c1|E, c2|Ē} ≥ {c1|F, c2|F̄}.

Discussion of axiom 1

The first part in axiom 1 requires that there are some consequences that are
strictly preferred to others. Loosely speaking, the decision maker is willing to
put some efforts into his actions in order to reach consequence c2 instead of
c1. This argument will be used in motivating axiom 2. Axiom 1 assures that
we indeed have a decision problem: given that all consequences are equal
this were not the case. The second part of axiom 1 assures that there are
some options that can be compared directly. However we do not require that
all pairs of options are directly comparable using the qualitative preference
statement ≤.

Axiom 2 (Preferences are transitive) :

(i) An option can be compared to itself, a ≤ a.

(ii) Given a1 ≤ a2, a2 ≤ a3 then a1 ≤ a3.

Discussion of axiom 2

The first part in axiom 2 is self evident: it would not make any sense to favor
an option to itself or to prohibit a comparison of an option to itself. Obviously
this definition leads to a ∼ a with ∼ denoting equality. The second part of
axiom 2 assures that a sequence of preferred options has to be transitive.
Allowing for intransitivity (allowing for a1 ≥ a3 above) would render strange
behaviour of the decision maker: As noted in the discussion of axiom 1, he is
willing to pay a price to avoid the less favored situation. Hence intransitivity
would permit to put efforts into moving in circles and finally reaching the
state we started off. Note that axiom 2 is also valid for uncertain events and
that it can be extended to other binary preference relations.
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Axiom 3 (Preferences are consistent) :

(i) If c1 ≤ c2 then given any G > ∅ we have c1 ≤G c2.

(ii) If, for some c1 < c2, {c2|E, c1|Ē} ≤ {c2|F, c1|F̄} then E ≤ F .

(iii) If for some c and G > ∅, {a1|G, c|Ḡ} ≤ {a2|G, c|Ḡ}, then a1 ≤G a2.

Discussion of axiom 3

Axiom 3, part (i) states that preferences between consequences must not
depend on the current state of information. The second part states that if
there are some c1 < c2 that lead to the preference relation {c2|E, c1|Ē} ≤
{c2|F, c1|F̄}, then this preference must be assigned to any c1 < c2. The third
part of axiom 3 requires that if the preference {a1|G, c|Ḡ} ≤ {a2|G, c|Ḡ} is
valid for some consequence c it must be valid for any option a. At this point
it seems advisable to add two further definitions that will be used below.

Definition 3.1.2 (Significant event) Given G > ∅, an event E is consid-
ered significant, if c1 <G c2 implies c1 <G c2|E, c1|Ē <G c2.

We can understand significant events as events that are plausible but not
certain given information G. If c2 is preferred to c1, the significant event E
increases the probability to arrive at the favored event c2. Using the previous
axioms we can show that for E to be significant the constraint ∅ < G∩E < G
has to be met.

Definition 3.1.3 (Pairwise independence of events) Two events E
and F are said to be independent, denoted by E ⊥ F , if ∀c, c1, c2 and any of
the binary relations <, > or ∼, further denoted as ∗, we find:

(i) c ∗ {c2|E, c1|Ē} ⇒ c ∗F {c2|E, c1|Ē}
and

(ii) c ∗ {c2|F, c1|F̄} ⇒ c ∗E {c2|F, c1|F̄}.
Two events are said to be independent, if the occurrence of one does not
change preference relations obtained by the occurrence of the other.

We will now formulate two quantitative axioms that make the axiomatic
framework complete. These axioms allow us to give precise statements about
uncertainties of events and enable us to compare all different pairs of options
- which was not assumed in the definition of the qualitative preference re-
lations. In order to prepare this quantification, we should remember that
definition 3.1.1 casts the uncertainty attached to our decision problem in the
existence of an algebra E of relevant events.
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Axiom 4 (Existence of standard events) There exists a sub algebra S
of E and a function µ : S 7→ [0, 1] such that:

(i) S1 ≤ S2 ⇔ µ(S1) ≤ µ(S2).

(ii) S1 ∩ S2 = ∅ ⇔ µ(S1 ∪ S2) = µ(S1) + µ(S2).

(iii) for any α ∈ [0, 1] there is a std. event S such that µ(S) = α, S ⊥ E
and S ⊥ F , where E and F are any other events.

(iv) S1 ⊥ S2 ⇔ µ(S1 ∩ S2) = µ(S1)µ(S2).

(v) if E ⊥ S, F ⊥ S and E ⊥ F then E ∼ S ⇒ E ∼F S.

Discussion of axiom 4

Axiom 4 defines the existence of standard events to be part of the algebra of
relevant events E . Furthermore it defines a measure that allows to quantify
the qualitative preference relations among them. In Bayesian decision theory,
these standard events play essentially the same role as do measurements in
physical sciences. Part (i) in axiom 4 establishes compatibility of qualitative
preference relations among standard events and the relation between the
numerical values obtained with function µ(). Given two standard events
S1 and S2 that cannot occur together, part (ii) of the axiom asserts that
the mapping of the event of observing at least one of the standard events is
equivalent to the sum of the mappings of the events. Part (iii) asserts that
we can generate independent standard events with any α ∈ [0, 1]. Having two
independent standard events S1 and S2, part (iv) says that the mapping of the
event that both occur together is equivalent to the product of the mappings of
the two events. The consequence of part (v) of axiom 4 is that given pairwise
independence of three events S, F and E an order relation between S and E
is not affected by the occurrence of the independent event F . Finally axiom
5 requests that using standard events, we can measure both preferences and
uncertainties with arbitrary precision.

Axiom 5 (Precise measurement of preference and uncertainty) :

(i) if c1 ≤ c ≤ c2 there exists a standard event S such that c ∼ {c1|S, c2|S̄}.
(ii) For any event E there exists a standard event S such that E ∼ S.
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Discussion of axiom 5

Part (i) in axiom 5 compares a consequence with an option. We can always
do so as the consequence can be interpreted as an option conditioned on
the certain event Ω. The main idea behind axiom 5 is that we can define
two numbers x ∈ [0, 1] and y = 1 − x and re map S = x 7→ S as well as
S̄ = y 7→ S. Increasing x will decrease the preference for the right side and
we will finally reach the equivalence relation between c and the option. The
second part of axiom 5 guarantees that any event E can be measured by a
standard event.

3.1.2 Probability as measure of belief and belief up-
dates

Equipped with the five axioms reviewed in the last subsection, we are able
to formulate two propositions important for any analysis in uncertain envi-
ronments. The first proposition states that a measure of uncertainty that is
consistent with the five axioms must be a probability measure. The second
proposition states that there is only one way for revising beliefs in the light
of new information that is consistent with the axiomatic framework provided
above: We must revise our beliefs using Bayes’ theorem. We will only provide
the theorems, for the proofs we refer to [BS94].

Definition 3.1.4 (Measure of degree of belief) Given an uncertainty
relation ≤, the probability P (E) is the measure µ(S) associated with any
standard event S such that S ∼ E.

Remarks to definition 3.1.4

In definition 3.1.4 we define the probability of an arbitrary event E by com-
paring to a standard event S. This comparison uses the qualitative pref-
erence relation ≤. As mentioned in the discussion of definition 3.1.1, these
preference relations depend on the state of information of the decision maker.
Hence all probabilities are personal or subjective and different decision mak-
ers can assert different probabilities to the same event. Note that [BS94]
justify this definition by proving the proposition 3.1.1

Proposition 3.1.1 (Probability structure of degrees of belief) :

(i) P (∅) = 0 and P (Ω) = 1.

(ii) if E ∩ F = ∅ then P (E ∪ F ) = P (E) + P (F ).
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(iii) E is significant if, and only if 0 < P (E) < 1.

Proof. The proof is found in [BS94], page 36. Proposition 3.1.1 tells us that
under the axiomatic framework summarized above, coherent degrees of belief
must take the form of a probability measure. Thus whenever reporting about
uncertain states, we are forced to report probabilities. Another consequence
of the five axioms concerns revision of beliefs, which must be done using
Bayes theorem.

Proposition 3.1.2 (Revision of belief by Bayes theorem) :
For any G > ∅ we get:

P (E|G) =
P (E ∩G)

P (G)

Proof. For a proof, we refer to [BS94], page 39. In [BS94] there is also a
more complete formulation of Bayes theorem, valid for any partitions of the
certain event Ω.

3.1.3 A decision criterion

The final proposition we will quote here will provide us a quantitative mea-
sure for comparing different actions. Again we consider the decision prob-
lem (E , C, A, ≤). For simplicity we assume here that the set of conse-
quences C is bounded, that is we have two extreme consequences c∗ < c∗

with c∗ ≤ c ≤ c∗∀c ∈ C. A generalization that allows for unbounded conse-
quences can be found in [BS94].

Definition 3.1.5 (Utility function for consequences) Given a prefer-
ence relation ≤, the utility of a consequence c, u(c) = u(c|c∗, c∗), relative
to the extreme consequences c∗ and c∗ is the real number µ(S) associated
with the standard event S such that c ∼ {c∗|S, c∗|S̄} with S̄ denoting not S.
The mapping u : C 7→ < is called the utility function.

A proposition about the existence and uniqueness of bounded utilities is
formulated in [BS94]. The utility function u(c) can now be used to attach
an overall numerical value to an option a.

Definition 3.1.6 (Conditional expected utility) Given a decision prob-
lem with bounded consequences, some relevant event G > ∅ and the option
a ≡ {cj|Ej, j ∈ J},

ū(a|c∗, c∗, G) =
∑
j∈J

u(cj|c∗, c∗)P (Ej|G),
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defines the expected utility of option a given G with respect to extreme con-
sequences c∗ and c∗.

The utility of an option a is a random quantity, and ū is just its expectation
when conditioning on G.

Finally we will state a proposition regarding decision criteria for bounded
decision problems.

Proposition 3.1.3 (Decision criterion for bounded consequences)
For any decision problem with bounded consequences c∗ < c∗ and G > ∅,

a1 ≤G a2 ⇔ ū(a1|c∗, c∗, G) ≤ ū(a2|c∗, c∗, G).

Proof. For a proof, we refer to [BS94], page 52. Expressed in words, propo-
sition 3.1.3 tells us that any option we decide for has to have the largest
expected utility among all possible options.

3.1.4 Summary

As already stated at the beginning of this section, this is only a fraction of the
material found in [BS94]. The importance of this section lies in the fact that
it justifies a method for taking actions consistently when faced with uncer-
tain scenarios. Whenever we report about uncertain discrete or continuous
states, proposition 3.1.1 tells us that we must use probabilities or probability
densities. Furthermore in proposition 3.1.2 we see that once accepting the
axioms Bayesian inference is the only way to update initial beliefs in the
light of new information. The framework presented here assumed a finite
number of possible events. However an extension to infinite space of events
is possible. Details are again provided by [BS94].

Another important consequence of this section is that all probabilities
are subjective. Different decision makers may have different initial states of
information. Hence they will come to different conclusions.

3.2 Bayesian methods

The last section showed that probabilities as belief measures and Bayesian
inference are no ad hoc definitions. Both are provable consequences from
five axioms. Hence using a probabilistic framework and Bayesian inference
are justified theoretically once accepting these axioms. However this moti-
vation for using Bayesian methods is not constructive in the sense that we
do not have any tools for inference yet. This section provides an overview of
inference techniques used in later chapters.
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3.2.1 Priors and Likelihoods

Applying Bayesian techniques requires a stochastic model where we know
how to formulate some prior and a normalized likelihood function. We will
assume here that our model has more than one parameter, some we are
interested in and others, called nuisance- or hyper-parameters, we are not.
Bayesian analysis is carried out by applying proposition 3.1.2 (although in a
generalized version) to the problem of interest. Assuming that we want to
infer the posterior distribution over model coefficients ϕ, we get:

p(ϕ|D) ∝ p(D|ϕ)p(ϕ), (3.1)

with p(D|ϕ) denoting the normalized likelihood function and p(ϕ) represent-
ing prior beliefs. In order to get a proper density, (3.1) still needs to be
normalized.

In this thesis we will deal with three different kinds of problems, where
such normalized likelihood functions exist:

• Regression problems with the likelihood: p(D|ϕ) = 1
ZD

∏
n p(yn|ϕ, xn),

and normalization constant ZD =
∏

n

(
2π
β

)0.5

, where ϕ are the model

coefficients, yn are the regression values (“targets”) and xn are the re-
gressors. The normalization constant emerges from assuming a Gaus-
sian noise model, where β denotes the precision (inverse variance) of
the Gaussian.

• Dichotomous or polychotomous classification problems with the likeli-
hood p(D|ϕ) =

∏
n P (tn|ϕ, xn), where tn are the class labels and xn are

the model inputs. Note that the likelihood has normalization constant
1.

• Density estimation with the likelihood p(D|ϕ) =
∏

n p(xn|ϕ), where xn

are some observations of the distribution of interest. As the model pre-
dicts density estimates from a normalized probability density function,
the likelihood has again proper normalization.

The second requirement to allow for a Bayesian analysis is that we must
be able to formulate our prior assumptions in terms of prior distributions
over model coefficients. Often we have some idea how to do this. However
in other cases it is difficult and we might want to use an “uninformative
prior”. At this point it is important to point out that a prior cannot be
wrong. In a Bayesian understanding a prior reflects the initial knowledge of
the subject that is about to apply Bayesian inference to a particular problem.
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This initial information can differ from subject to subject and justifies every
prior. However in practice a little more care is necessary - especially when
we want to formulate ignorance. One way of formulating an uninformative
prior is due to [Jef61] who proposed several so called Jeffreys’ priors. The
Jeffreys’ prior has a nice interpretation in terms of the information geometry
of the model class. In [Bal97] the author shows that “ignorance” in the space
of realized functions leads to Jeffreys’ priors over model parameters. In order
to arrive at a prior that reflects prior ignorance, [BS94] suggest to carry out
a reference analysis, which has been successfully applied to several problems.

In general the priors will have an effect on the result and it is always
advisable to check this effect by testing for sensitivity of the results to small
changes of the prior settings. The concept of such a sensitivity analysis is
again treated in [BS94]. The real problem with priors is that the less infor-
mative over parameters they are, the more strongly they force small model
complexities. This suggests that we should also test for the sensitivity of the
selected model complexity on the prior. Such kind of sensitivity analysis is
discussed in [RG97] in the context of model selection in Gaussian mixture
density models.

Another approach in the specification of priors is the so called conjugate
analysis. According to [BS94], we can specify conjugate priors for all distri-
butions from the exponential family. A pragmatic point of view of conjugate
priors is that if we give a model coefficient a conjugate prior, multiplication
with the likelihood will not change the functional form of the resulting dis-
tribution. Often this is restricted to the so called full conditional, which is
the posterior of a particular model coefficient when conditioning on all other
parameters.

3.2.2 Directed acyclic graphs, conditioning and
marginalization

After having summarized the basic methodology of a Bayesian analysis, we
will now give a short enumeration of various methods used to represent pos-
terior distributions or probabilities depending on whether we infer about
continuous or discrete quantities. A tool that is often useful for understand-
ing complex stochastic models and for deriving inference algorithms is the
directed acyclic graph (DAG).

The illustration provided in figure 3.1 shows such a DAG for a hypo-
thetic model with 3 model coefficients (ϕ1, ϕ2 and ϕ3), latent variables tn,
we assume to be discrete, and the corresponding observations xn. The DAG
illustrates the relations for 2 successive observations with all model coeffi-
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1ϕ ϕ2

tn

xnϕ3 ϕ3 xn+1

1ϕ ϕ2

tn+1

Figure 3.1: A sample directed acyclic graph. We used tn and tn+1 to denote
two latent variables, ϕ1 to ϕ3 denote the model coefficients. Finally we use
xn to denote the observations. The model is hypothetical, however, closely
related to hidden Markov models.

cients being replicated. We say that node tn is conditionally dependent on
tn−1, ϕ1 and ϕ2. Assuming we know the value of tn we can formulate e.g.
the distribution over ϕ1. When observing2 all nodes in the graph, the dis-
tribution of each variable depends on the values of all nodes in its Markov
blanket. The Markov blanket are all parents, all children and the parents
of the children. Thus in our case, when we observe all nodes in the DAG,
the distribution p(ϕ1|tn, ϕ2) is conditionally dependent on the discrete latent
variable tn and the other model parameter ϕ2. The DAG in figure 3.1 en-
codes that ϕ1 and ϕ2 are marginally independent. However conditioning on
tn introduces a dependeny among them. (that is why the Markov blanket
contains the parents of the children). Another assumption implied by this
DAG is that xn and tn+1 are, conditional on tn, independent. Note that
similar relations are found in hidden Markov models.

Assuming N samples in the training data the joint probability density

2Allthough circles are unobserved, we may assume that their values are known. This
“trick” is the basis of the Gibbs sampler, a sampling thechnique described below which is
frequently used to approximate the joint density in such DAG’s.
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function (pdf) implied by the DAG in figure 3.1 is:

p(ϕ1, ϕ2, ϕ3, t1, ..., tn+1, x1, ..., xn+1) = p(ϕ1)p(ϕ2)p(ϕ3) (3.2)
N∏

n=1

p(tn|tn−1, ϕ1, ϕ2)p(xn|tn, ϕ3).

Our interest is not the joint probability density but the posterior,
p(ϕ1, ϕ2, ϕ3|x1, ..., xN). We obtain p(ϕ1, ϕ2, ϕ3, t1, ..., tN |x1, ..., xN) from (3.2)
by conditioning on observed data (x1, ..., xN). Conditioning is one way to get
rid of unwanted quantities. However we may only condition on known quan-
tities such as observations. The latent variables (t1, ..., tN) that occur in (3.2)
have to be removed as well. As they are not observed, we must do this by
integrating them out. In the Bayesian literature this operation is referred to
as marginalization. As pointed out in [Siv96], the distributions over some
quantity obtained by conditioning will always have less variance compared
to the same distribution obtained by marginalization.

3.2.3 Different levels of inference

Bayesian inference is more than just finding posterior distributions over
model coefficients. It allows treating other parameters that occur in stochas-
tic models like noise levels or regularization constants. Furthermore we can
apply the Bayesian framework to allow for model selection. This subsection is
meant as an illustration of how these problems are approached theoretically.

We assume a regression model with coefficients ϕ that predicts targets
yn. The noise is assumed Gaussian with precision (inverse variance) β. The
prior over model coefficients is also assumed to be Gaussian with precision
α. We call α and β hyper-parameters or nuisance parameters. The posterior
over model coefficients and hyper-parameters is:

p(ϕ, α, β|D) =
p(D|ϕ, β)p(ϕ|α)p(α)p(β)

p(D)
(3.3)

We obtain p(ϕ|D) by integrating (3.3) over α and β. However in many cases
these integrals cannot be solved analytically.

The normalization constant is obtained by integrating (3.3) over ϕ as well.
Usually the normalization constant p(D) is referred to as model evidence. Its
importance emerges if we make the model, I, explicit. The normalization
constant, p(D|I) is the likelihood that model I generated the data set D. We
can use this to determine the posterior probability of model I:

P (I|D) =
p(D|I)P (I)

p(D)
. (3.4)
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Note that P (D) in (3.4) is the normalization constant
∑

I P (D|I)P (I), which
differs from P (D) in (3.3). Prior ignorance about model I is easily reflected
by assigning equal prior probability to each model. We have to be aware
that the prior over model coefficients has an influence on p(I|D): the higher
our prior ignorance over model coefficients, the larger the probability of less
complex models.

Once we have found the posterior distributions over model coefficients
and the posterior probabilities over models, we are ready for predicting. Pre-
dictions are obtained by evaluating Stieltjes integrals over the posterior prob-
ability density p(ϕ|D):

p(yn|D) =

∫ ∞

ϕ=−∞
p(yn|ϕ)p(ϕ|D)dϕ. (3.5)

3.2.4 Representing posterior densities

We will now give a brief overview over those techniques used in later chap-
ters to obtain representations of posterior distributions. We saw in the last
subsection, e.g. in equation (3.5), that many apects of Bayesian inference
require to solve integrals over complex distributions. The resulting integrals
are hardly analytically feasible and we have to resort to approximations.
There are two entirely different approaches that are commonly used:

• We can approximate the posterior by some parametric distribution(s).
In subsequent chapters we will apply two of the methods: the Laplace
approximation, where a multi-variate Gaussian is fit into one mode of
the posterior and a technique called ensemble learning, or variational
approximation. In ensemble learning, a mean field approximation is fit
into one mode of the posterior using free form optimization.

• The other way of representing posterior densities is by drawing ran-
dom samples according to their distribution. As one can imagine, the
posterior densities will have rather complex structure with most of the
probability mass found in small regions of the parameter space. There-
fore only such sampling techniques are well suited that can deal with
this kind of problems. Among the methods that are usually applied,
Markov chain Monte Carlo (MCMC) methods are the most prominent
ones.

Laplace approximation

The Laplace approximation is reviewed in [BS94]. Recently, [RHRP98] found
the Laplace approximation useful for an inference of Gaussian mixture mod-
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els. In principle, one mode of the posterior is found by numerical optimiza-
tion. As is easily seen in (3.7), the covariance matrix of the Gaussian is given
by the inverse Hessian of the regularized error function in that mode. In or-
der to obtain this Gaussian, we approximate the penalized error function
E(ϕ) by a truncated Taylor series expansion around the mode3, ϕ̂:

E(ϕ) = (E(ϕ) + (ϕ− ϕ̂)T ∆ϕ∆ϕT E(ϕ)(ϕ− ϕ̂))|ϕ=ϕ̂. (3.6)

Exponentiation of the second order Taylor series expansion of −E(ϕ)4 and

setting H = 2∆ϕ∆ϕT E(ϕ)|ϕ=ϕ̂, we get the corresponding Laplace approxi-
mation:

p(ϕ|D) =

(
1

2π

)d/2

|H| exp(−0.5(ϕ− ϕ̂)T H(ϕ− ϕ̂)). (3.7)

As a final remark, we want to mention that the normalization constant of
the Gaussian distribution also provides an estimate for the model evidence
in (3.3).

Ensemble learning

Another method for approximating posterior distributions that will be used
in a subsequent chapter of this thesis is a technique called ensemble learning
or variational approximation of the posterior. As was introduced by [HvC93],
this technique approximates the posterior over ϕ by a parameterized ensemble
Q(ϕ; θ). The optimal approximating ensemble of the posterior is found by
minimizing the variational free energy which is well established technique in
statistical physics (see e.g. [Fey72]):

F (θ) = −
∫

dϕQ(ϕ; θ) log(
p(D|ϕ, I)p(ϕ|I)

Q(ϕ; θ)
). (3.8)

In terms of Bayesian statistics, minimizing the variational free energy (3.8)
corresponds to maximizing a lower bound of the log evidence of model class I.
Variational approximations are popular tools, especially for approximating
distributions in DAG’s (see [Jor99] and [JJ00]) and for Bayesian inference
of various models (e.g. [Mac97] and [GB00]). Compared to Laplace ap-
proximations, ensemble learning has the advantage that the approximating

3The mode, ϕ̂, is found by nonlinear optimization techniques like quasi Newton methods
applied to the negative log of the regularized likelihood function.

4The error function corresponds to the negative log likelihood plus a regularization
term.
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distribution is not restricted to multivariate Gaussians. Finding the best
parametric form of the ensemble is part of the optimization. On the other
hand, there is also the problem that (3.8) gives only a lower bound of the
model evidence. Therefore, all evidence based activities such as selecting the
most appropriate model class must be done with extreme care.

Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods are a special kinds of sampling
techniques. In sampling, one approximates the posterior by samples drawn
from it. The special property of MCMC methods is that a new sample is
drawn conditional on the current sample. The power of MCMC methods is
that they are useful for sampling from very narrow distributions. Hence they
are widely used in statistics (see [GRe96]). We will review three different
approaches here:

• the Metropolis Hastings algorithm,

• Gibbs sampling and

• the reversible jump MCMC sampler.

Metropolis Hastings updates

A common principle of all three algorithms is that detailed balance between
any two successive samples of the Markov chain is a sufficient condition for
leaving the limiting distribution invariant. The detailed balance condition is
expressed as:

p(ϕ
t+1

)p(ϕ
t
|ϕ

t+1
) = p(ϕ

t
)p(ϕ

t+1
|ϕ

t
). (3.9)

Expressed in words, the probability of being in state ϕ
t
times the probability

of moving into state ϕ
t+1

must be equal to the probability beeing in state
ϕ

t+1
and moving into state ϕ

t
. The Metropolis Hastings algorithm has been

proposed by [MRR+53]. In principle the proposal distribution p(ϕ
t+1
|ϕ

t
)

is an arbitrary random variate that may depend on the current state of
the Markov chain, ϕ

t
. After a move has been proposed, we calculate the

acceptance ratio:

α = min

(
1,

p(ϕ
t+1

)p(ϕ
t
|ϕ

t+1
)

p(ϕ
t
)p(ϕ

t+1
|ϕ

t
)

)
. (3.10)

It is easy to show that this acceptance ratio indeed guarantees detailed bal-
ance (see e.g. [GRe96]). If the proposal distribution is independent of the
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current state5, ϕ
t
, we get as a special case the Metropolis algorithm ([Has70]).

Another generalization is known as single component Metropolis Hastings al-
gorithm: It can be shown (e.g. [GRe96]) that a split of the parameter vector
and component wise updating does not violate detailed balance.

Gibbs sampler

The Gibbs sampler can be seen as a special case of a single component
Metropolis Hastings algorithm. Originating from the heat bath algorithm
known in statistical physics, the Gibbs sampler was proposed to the statis-
tics community by [GG84]. The key idea is to propose a new state for the
n-th component of the parameter vector ϕ from the so called full condi-

tional, p(ϕn|ϕ1
t+1, ..., ϕ

n−1
t+1 , ϕn+1

t+1 , ..., ϕN
t+1), where N denotes the number of

coefficients. Using this as a proposal, it is easy to show (e.g. [GRe96]) that
the acceptance rate (3.10) is always 1. The Gibbs sampler is therefore for-
mulated as shown in rogram 3.1. As soon as we have drawn a new parameter
value, it is used in the full conditional to replace the old one.

Program 3.1 The Gibbs sampler.

initialize(ϕ)
REPEAT

ϕ1
t+1 ∼ p(ϕ1|ϕ2

t , ..., ϕ
N
t );

...
ϕn

t+1 ∼ p(ϕn
t+1|ϕ1

t+1, ...ϕ
n−1
t+1 , ϕn+1

t , ..., ϕN
t );

...
ϕN

t+1 ∼ p(ϕN |ϕ1
t+1, ..., ϕ

N−1
t+1 );

UNTIL (convergence)

Reversible jump MCMC

The last technique we want to mention here was recently proposed in [Gre95].
Reversible jump MCMC generalizes the Metropolis Hastings algorithm in a
way that permits the formulation of dimension changing moves. This al-
lows sampling across model classes. Implementing a hybrid sampler, we get
samples from each within dimension posterior and estimates of the poste-
rior probabilities of each model class I. These probabilities, P (I|D), are not
provided by the other techniques described above.

5E.g. using a Gaussian centered in the current state.
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The key idea behind reversible jump MCMC is to formulate the sampling
algorithm in the combined parameter space C =

⋃
k Ck. The formulation

of transition kernels and detailed balance involves non-trivial measures that
live in C (see [Gre95] for details). Metropolis Hastings-like proposals have
to carry out dimension switching moves. Usually one restricts the updates
to moves between neighboring spaces. That is from Ck we can only move to
spaces Ck+1 and Ck−1. Technically, each move is a pair of dimension switching
steps which form a bijection: (ϕ

k
, uk) ↔ (ϕ′

k
, u′k), where ϕ

k
and ϕ′

k
denote

the parameter values. The randomly chosen quantities uk and u′k are chosen
such that the dimensions in this bijection match. A sufficient condition for
the reversible jump MCMC to leave the distribution over the joint space C
invariant is detailed balance within each type of move. Detailed balance is
guaranteed when the acceptance probability of the move from space Ck to
space Ck′ takes the following form:

α = min

(
1, lh. ratio× prior ratio× p(m,u′k|ϕ′k)

p(m,uk|ϕk
)
×

∣∣∣∣∣
∂(ϕ′

k
, u′k)

∂(ϕ
k
, uk)

∣∣∣∣∣

)
(3.11)

The third term is the proposal ratio which is the joint probability of proposing
move m and the parameter values, uk and u′k, that are used in constructing
the new model coefficients. The last is the Jacobian arising from a change of
variables.

3.2.5 Summary

This section on Bayesian methods was meant to provide an overview of the
inference aim in a Bayesian analysis and to review some techniques how these
aims can be obtained technically. We saw that Bayesian inference allows more
than just parameter inference and predictions. Elaborated models will take
some nuisance parameters like noise levels or regularization constants into
account. Serious applications of Bayesian inference will also attempt model
selection or even better model veraging. In the following chapters of we will
apply these inference techniques to various problems.



Chapter 4

Bayesian Preprocessing

In chapter 3 we motivated a probabilistic approach and Bayesian inference
whenever we deal with uncertain scenarios. We also reviewed some tools that
will be useful for problem solving. This chapter will investigate an optimal
Bayesian setup for reporting some unknown states given a segment of a time
series. Such problems are found in physical or natural sciences. Especially
biomedical problems are often structured like that. Examples of time series
are bio-signals like the electroencephalogram (EEG), the electrocardiogram
(ECG) or the electromyogram (EMG). In physical sciences we find record-
ings of temperature, pressure or other measurements. The unknown quantity
of interest is some unobserved state, usually not directly available from the
time series. In biomedical applications the state is usually given by an ex-
pert’s opinion, in physical sciences we might get the state by inspecting the
outcome of the physical process. The novel part in this chapter are a proof
that renders the classical approach of treating preprocessing separately to be
wrong. Furthermore, we analyze a lattice filter structure of an AR process,
which has so far not been done within a Bayesian framework.

4.1 A Bayesian view of preprocessing

Usually recordings provide much less information as is given by the amount
of sampled data. The basic idea is that the unknown state of interest causes
some unobserved coefficients in a stochastic process which is responsible for
the observed time series. The problem is classically solved by partitioning
the analysis in a preprocessing and a post processing stage. Preprocessing
obtains some features which are a compressed representation of the time
series. The classification stage uses some function that maps these features
to the unknown state of interest. The uncertainty associated with this state

32
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is evident and usually taken it into account by modeling the probability
of the state of interest. The classical approach is to condition the state
probabilities on the preprocessed features. This means to condition on latent
variables which can be shown to be suboptimal. The extracted features are
latent (unobserved) variables - hence conditioning on them is equivalent to
neglecting the uncertainty associated with their values.

Considering the problem from a Bayesian point of view, we have two
sets of unobserved variables. Obviously the first one is the unknown state
we want to infer. Being unknown, the Bayesian framework tells us that we
should report probabilities to express our beliefs about this state. So far this
is still identical to the classical approach. Contrary to the classical approach,
we use a hierarchical model with a second unobserved variable. This second
latent variable are the coefficients of the dynamic process that generates the
time series. Hence we have another unknown quantity with some uncertainty
attached to its value. The Bayesian framework tells us that we have to take
this uncertainty into account. Figure 4.1 provides an illustration of this
hierarchical model in terms of a directed acyclic graph (DAG).

t

ϕ

X

Figure 4.1: A directed acyclic graph for the hierarchical model. The variable
t denotes the unknown state variable of interest, ϕ are latent (unobserved)
variables representing features from preprocessing and X denotes a segment
of a time series. Circles indicate latent variables, whereas the square indicates
that X is an observed quantity.
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The probabilistic graph in figure 4.1 is just a graphical representation of
conditional independence underlying the hierarchical approaches considered
in this section. We can state this independence formally as:

p(t = tj, ϕ,X ) = P (t = tj)p(ϕ|t = tj)p(X|ϕ). (4.1)

The probabilistic dependency between features ϕ and a segment of the ob-
served time series X is motivated by the stochastic model underlying all
preprocessing techniques. This assumption is true for AR-processes, but it
is also true for “non-parametric” techniques like periodogram (fast Fourier
based) estimates of the power spectral density. According to [RF95], we can
view periodogram estimation as a generalized linear model under a Gaussian
noise assumption.

The only known quantity in the DAG 4.1 is the observed segment of the
time series X . Hence there is no uncertainty associated with X 1, conditioning
on it, we get the best estimate of the probability of t = tj, P (t = tj|X ). An
important remark is that conditioning on X is just another notion of using
information to change beliefs. Applying Bayes theorem, we transform the
joint probability density in (4.1) and get the conditional density:

p(t = tj, ϕ|X ) = P (t = tj|ϕ)p(ϕ|X ). (4.2)

We get P (t = tj|X ) by removing ϕ, i.e. solving the marginalization integral:

P (t = tj|X ) =

∫ ∞

ϕ=−∞
P (t = tj|ϕ)p(ϕ|X )dϕ. (4.3)

Contrary to (4.3), the classical approach to predicting the probability of the
unknown state t would be to use a point estimate of the feature vector, ϕ̂, and
approximate the integral by P (t = tj|ϕ̂). This is indeed an approximation of
the integral in (4.3), where the posterior distribution p(ϕ|X ) is replaced by a
degenerate posterior that puts all its probability mass to the point estimate
ϕ̂. Intuitively this approach is suboptimal because it neglects the uncertainty
we have about ϕ.

We will now prove that solving the marginalization integral (4.3) is the
only “Bayesian” way of dealing with models represented by a DAG like the
one in figure 4.1. This DAG incorporates the classical approach, thus con-
ditioning on some best estimate of a feature, ϕ̂, is not consistent with the

1That is, we neglect any uncertainties about the observed time series such as measure-
ment noise. Such uncertanties can be taken into account by using similar ideas as are
fomulated below and in chapter 7.
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Bayesian framework. More precisely, the classical approach means using the
wrong preference relation between options as it appears in definition 3.1.1.

First we formulate reporting the unknown state of t ∈ {t1, ..., tk} as a
generalized decision problem. We allow to report class label k ∈ {t1, ..., tj, u},
with u being the label for unknown (doubt case). A decision d is a mapping
of an arbitrary (tj, ϕ) ∈ Ω to a consequence cj. For simplicity, we assume
that there are 3 consequences: c = cw if we report the wrong state, c = cu

if we refuse to report any state (reporting doubt case u) and c = cc if we
report the correct state. Assuming that reporting t correctly is of most value,
we require that cw < cc and cu < cc. Hence we have a generalized decision
problem with bounded consequences. The worst consequence is c∗ = cw or
c∗ = cu, whichever is smaller, and the best consequence is c∗ = cc. This
definition of possible consequences depends only on the state variable t. The
expected utility however will also depend on ϕ.

Proposition 4.1.1 (Consistency of marginalization) Given the DAG
in 4.1, the posteriori belief P (t|X ) about a state variable t, obtained by solv-
ing the marginalization integral (4.3), is the only belief consistent with the
Bayesian framework.

Proof. We will proof this by deriving the expected utility of reporting state
t = k when observing data X :

ū(d(ϕ, tj), c∗, c∗,X ) =

∫

ϕ

∑
j

u(d(ϕ, tj), c∗, c∗)p(t, ϕ|X )dϕ

Using (4.2) we get:

ū(d(ϕ, tj), c∗, c∗,D) =

∫

ϕ

∑
j

u(d(ϕ, tj), c∗, c∗)P (t|ϕ)p(ϕ|X )dϕ. (4.4)

Since d(tj, ϕ) is just a function of tj we can solve the integral over ϕ in(4.4)
and finally arrive at:

ū(d(tj), c∗, c∗,D) =
∑

j

u(d(tj), c∗, c∗)P (t|X ) (4.5)

The integral solved in order to get (4.5) from (4.4) is exactly the marginal-
ization integral (4.3). From the step that took us from (4.4) to (4.5), we see
that the belief about t in the definition of the utility function is obtained by
solving (4.3). Hence the proof follows from proposition 3.1.3, which tells us
that the expected utility, ū(d(tj), c∗, c∗,X ), is the only consistent measure of
the conditional preference relation ≤X between options. ¦
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The consequence of proposition 4.1.1 is that any other approaches of
inferring beliefs than the one stated in (4.3), are not consistent with the in-
formation provided by X . This includes any technique based on conditioning
on a best estimate of a feature variable ϕ.

4.2 A Bayesian lattice filter

We may summarize the last section in one sentence: As soon as we report
uncertainties about some state within a Bayesian setting, we have to do this
throughout the entire system. The question remains: Where is the point
when we start to think “Bayesian”? There might be different opinions but
according to the above principles, it starts as soon as we report uncertain-
ties about classes by using posterior probabilities for classes. Therefore it
seems imperative that preprocessing should be done within a Bayesian set-
ting. In this chapter we infer reflection coefficients, the parameters of the
lattice filter structure of an AR process, within a Bayesian framework. We
use a non-informative prior and derive an expression of the posterior distri-
bution of the m-th reflection coefficient given the distributions of all lower
order coefficients. Based on this posterior distribution, we derive an analytic
expression of the posterior volume (the Bayesian model evidence) and show
how this can be used for model order estimation. The posterior probability
of a model must be based on the Bayesian model evidence. Following the
axioms and propositions summarized in the chapter 3, the posterior proba-
bility of a model is the only consistent measure of the degree of belief given
our prior assumptions and the data. Having more than one choice for a par-
ticular dataset, we can use the posterior probability of the model to find the
“best” model. Alternatively, and consistently with the last section, we must
use them all, weighted by the posterior probabilities. However, we can also
compare the degree of beliefs of models inferred on different data sets. This
requires that we have common reference model - which is easily obtained by
the proposed approach.

4.2.1 A lattice filter representation of AR-processes

Autoregressive (AR) processes are often used in signal processing applications
and the variety of parameter estimation methods is vast. A Bayesian analysis
of static AR-models is well known. Among several researchers, it was done
by [KG85] and by [BJ76]. More recently a Bayesian analysis of AR model
coefficients appeared in [RF95] in several different sections. All this literature
has in common that the researchers have calculated predictive distributions
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over AR-model coefficients.
We aim at a different solution that uses an order recursive implementa-

tion of Bayesian inference which is fast and nevertheless provides the benefits
of a Bayesian solution: we get a distribution over parameters and the possi-
bility to calculate the model evidence. The latter allows us to determine the
appropriate model order and it serves as a reliability measure. The approach
taken here is similar to the Laplace method described in section 3.2.4.

The AR-process is a time series model that is often used in practice. Its
popularity is motivated by the linearity of the model, which makes parameter
estimation simple. Equation 4.6 shows the generator transfer funtion of an
m-th order model

yt = ε−
m∑

k=1

yt−kak, (4.6)

where we used ε as one sample of zero mean Gaussian noise, ak, as AR-model
coefficients and yt as observation of the time series at time t. The coefficients
of the order recursive representation of AR processes are the so called re-
flection coefficients and the corresponding model is called lattice filter. As
reviewed in [Lju99] a certain setup in calculating the AR model coefficients,
ak, leads to the so called Levinson algorithm (4.7). The Levinson algorithm
shows us the connection between AR-process and reflection coefficients, ρm:

am+1
k = am

k + ρmam
m−k+1

am+1
m+1 = ρm (4.7)

The superscripts used in (4.7) denote the model order, the subscripts are the
indices of the AR-coefficients and ρ̂m is the m-th order reflection coefficient.

4.2.2 The likelihood of reflection- and AR-coefficients

In order to be able to express the posterior distribution over m-th order
reflection coefficients, we need an expression for their likelihood. As usual
for AR-processes, we assume that the process is driven by an i.i.d. Gaussian
noise process. This simple noise model enables us to carry out all calculations
analytically. Gaussian noise results in the likelihood, (4.8), of the m + 1-th
order AR-coefficients and the noise level, β.

p(X|θm+1, β) =
1

ZX (β)
exp

(
−1

2
β(y − Y m+1θm+1)T (y − Y m+1θm+1)

)
(4.8)

The vector y denotes the observed samples from the AR-process, Y denotes
the embedding matrix and X denotes the data2. Plugging (4.7) into (4.8)

2In a Bayesian setting it is advisable to express the likelihood as a distribution of the
data conditioned on model coefficients.
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we get the likelihood of the m-th order reflection coefficient, ρm, which still
depends on the m-th order AR-coefficients, θm, and the noise level β. When
we express θm = θ̂

m
+∆θm, where ∆θm is a multivariate zero mean Gaussian,

then we arrive at the following likelihood expression:

p(X|∆θm, ρm, β) =
1

ZX (β)
exp(−1

2
β((εm + ρmrm)T (εm + ρmrm) (4.9)

+ 2(εm + ρmrm)(Y m + ρmY mflr)∆θm

+ ∆θmT (Y m + ρmY mflr)T (Y m + ρmY mflr)∆θm))

We use εm to denote the forward prediction error of the m-th order model
and rm for the reverse time prediction error at lag −1. The quantity ZX (β)
is the normalization constant which we calculate as follows:

ZX (β) =

∫ ∞

−∞
...

∫ ∞

−∞︸ ︷︷ ︸
N

exp

(
−β

2
(εm

n + ρmrm
n )2

)
dεm

n = (
2π

β
)

N
2 . (4.10)

We will now express the posterior distribution of the m-th order reflection
coefficient. We do this by using appropriate priors and applying Bayes’ theo-
rem. The resulting expression is a joint probability density function (pdf) of
the reflection coefficient, ρm, the variation of the m-th order AR coefficients,
∆θm, and the noise level β.

4.2.3 Priors for noise levels and reflection coefficients

The priors required by any Bayesian analysis should reflect our prior be-
liefs about the model coefficients. In general we do not have much prior
information about the functions we want to model and even when we have,
transforming them into priors over model coefficients is still not easy. Hence
we will usually resort to using some uninformative normalizeable priors.

Fortunately this is not too difficult in the case of the lattice filter model:
In biomedical systems, we usually expect to find stable models. This allows
us to constrain the reflection coefficients within the closed interval [−1, 1]
and the uninformative prior is p(ρm) = 0.5.

The situation for the noise level β is somewhat less convenient: Usually
we do not know how to constrain the noise level. We know however that
the noise level β is a scale parameter. Hence we will follow [Jef61] and use a
Jeffreys’ prior, p(β) = 1/β.
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4.2.4 A posterior distribution over reflection coeffi-
cients

In this section we will derive a posterior distribution over reflection coef-
ficients. We combine the prior distributions over the reflection coefficient,
the noise level and the Gaussian over the variation of the m-th order AR
coefficient with the likelihood expression (4.9). Applying Bayes’ theorem, we
get the posterior distribution p(ρm, β, ∆θm|X ). A final marginalization step,
where we integrate over β and ∆θm leads us to the final goal, the posterior
distribution over the m-th order reflection coefficient, p(ρm|X ).

Multiplying (4.9) with the prior distributions p(β) = 1/β, p(ρm) = 0.5
and p(∆θm) = 1/C exp(−0.5∆θmT H∆θm) gives us:

p(ρm, β, ∆θm|X ) ∝ 1

2ZX (β)Cβ
exp(−1

2
β((εm + ρmrm)T (εm + ρmrm)

+ 2(εm + ρmrm)(Y m + ρmY mflr)∆θm

+ ∆θmT (Y m + ρmY mflr)T (Y m + ρmY mflr)∆θm)

+ ∆θmT H∆θm). (4.11)

The remaining steps of this section are concerned with finding the
marginal distribution over ρm. First we will integrate over ∆θm. Exact
marginalization renders the subsequent analysis intractable and we have to
introduce the following approximation. Assuming that p(∆θm) is sharply
peaked around zero, we get

∫ ∞

−∞
p(ρm, β, ∆θm|X )d∆θm ≈ p(ρm, β|D; ∆̂θ

m
).

Note that ∆̂θ
m ≡ 0. This seems a rather rough approximation. However,

similar arguments are commonly used within the Bayesian community. An
example is [Bre90], who uses the same approximation to derive an analytic
expression for the Bayesian evidence of generalized linear models. Using the
above approximation, we get

p(ρm, β|X ) ∝ 1

2ZX (β)β
exp(−1

2
β((εm + ρmrm)T (εm + ρmrm)))(4.12)

as an expression of the joint posterior distribution over the m-th order re-
flection coefficient and the noise level.

The marginalization integral that takes us from (4.12) to the posterior
distribution over the m-th order reflection is:

∫ ∞

0

p(ρm, β|X )dβ.
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After some calculations (details are found in appendix A) we get as a final
result:

p(ρm|X ) ∝ 0.5π−
N
2 Γ(

N

2
)
(
(εm + ρ̂mrm)T (εm + ρ̂mrm)

)−N
2
√

2πs

1√
2πs

exp

(
− 1

2s2
(ρm − ρ̂m)2

)

︸ ︷︷ ︸
normalized Gaussian

, (4.13)

as expression of the posterior distribution of the m-th order reflection coef-
ficient. The posterior in 4.13 is a normalized Gaussian and a multiplicative
factor, which is the Bayesian model evidence that will be used below for
model selection. Furthermore we find:

ρ̂m = − rmT εm

rmT rm
(4.14)

as expression of the most probable value of the reflection coefficient and

s2 =
1− (ρ̂m)2

(N − 1)
(4.15)

as corresponding variance. The variance of the reflection coefficient depends
on the estimate of the most probable value. It is interesting to see that
the variance tends to zero as soon as the reflection coefficient approaches
one. Although it is already evident from our derivation of the posterior
probability over reflection coefficients, we want to add as a final remark that
if m reflection coefficients are extracted from a time series, the reflection
coefficients exhibit conditional independence p(ρ1, ...ρm|X ) =

∏
m p(ρm|X ).

4.2.5 Bayesian evidence and model selection

In this subsection we use an interesting aspect of Bayesian learning: its ca-
pability to perform model selection. In general, Bayesian inference reports
conditional beliefs of different models, where we condition on the data seg-
ment used for inference. This requires that there must be more than one
possible model (or explanation) of a data segment. In the context of esti-
mating the appropriate model order of an AR lattice filter structure, we have
to compare against a “pure noise explanation”. If the probability of “reflec-
tion coefficient” is larger than the probability of “noise only”, we should opt
for using the coefficient. We calculate the probability for the k-th model by
proceeding within the Bayesian framework in a hierarchical manner. The
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posterior probability for the k’th model is expressed as:

p(Ik|X ) =
p(X|Ik)p(Ik)

p(X )
.

Assuming an uninformative prior for the k’th model of p(Ik) = 1/K with K
denoting the total number of models, we see that model selection should be
done according to the likelihood function of the k-th model p(X|Ik). This
quantity is the so called Bayesian model evidence. It is exactly the normal-
ization constant of the posterior over all model coefficients. As such, we have
already derived the model evidence of the m-th reflection coefficient in the
last section: it is the factor the normalized Gaussian in (4.13) is multiplied
with.

However, the usual approach to Bayesian model order selection requires
to compare different models on the same data. In the context of lattice
filters each step estimates only one coefficient. Hence we have to compare
the Bayesian evidence of a filter using the m-th reflection coefficient to the
Bayesian evidence of a lattice filter that does not use the m-th coefficient.
This is equivalent to the question whether the evidence using the m-th coef-
ficient is larger than the evidence assuming a pure noise process for the m-th
stage of the lattice filter.

As already mentioned, the Bayesian model evidence of the m-th reflection
coefficient is the multiplicative factor from (4.13):

p(X|Im) = 0.5π−
N
2 Γ(

N

2
)
(
(εm + ρ̂mrm)T (εm + ρ̂mrm)

)−N
2
√

2πs. (4.16)

The Bayesian evidence of not using the m-th reflection coefficient is derived
in a similar way as we do for the reflection coefficient. The likelihood is just
a function of the m-th order AR coefficients and the noise level β. Some
calculations finally lead to the evidence expression for not using the m-th
order coefficient. We use Īm to denote the corresponding model.

p(X|Īm) = π−
N
2 Γ(

N

2
)εmT εm (4.17)

Using (4.16) and (4.17), the probability of the m-th reflection coefficient
is:

P (Im|X ) =
p(X|Im)

p(X|Im) + p(X|Īm)
. (4.18)

Contrary to the common use of the posterior probability of models, where
the m probabilities sum up to 1, we have a slightly different situation here:
Each of the probabilities P (Im|X ) is between 0 and 1 and the optimal model
order is the largest index m, where P (Im|X ) is above 0.5.
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4.3 Experiments
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Figure 4.2: Probabilities for reflection coefficients for a synthetic 8-th order
AR model (see the text for details of the model). The model was estimated
from a time series with 400 samples. The 8-th reflection coefficient is the
last stage that got a probability larger than 0.5. Hence the model order was
estimated correctly.

The experiments performed with the Bayesian lattice filter proposed in
section 4.2 serve two purposes. First of all we need to check whether the ap-
proach is correct. These checks are best performed using data from synthetic
AR-models. In the context of the sleep analysis project that was described
in section 2, we are interested in applying the lattice filter as preprocessing
technique. Our main interest is in assessing whether small model proba-
bilities correspond to segments of EEG that human experts consider to be
contaminated by some artefact. As white noise leads to small model proba-
bility, this is definitely true if an artifact corresponds to contamination with
white noise. Our interest in investigating the behaviour of the algorithm
in connection with artefacts is motivated by our aim to avoid giving wrong
decisions which might be due to such artifacts. An example might illustrate
this: the estimates obtained from sleep EEG during wake will be similar to
those obtained from white noise. However an EEG signal that looks like
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white noise has most probaly no physiological origin. It is usualy due to
some technical problem. Hence a subsequent analysis would decide “wake”
where the true decision should be “artefact”. The experiments concerned
with artefacts will be done using data from all night recordings.

Correctness of the most probable coefficient as defined in equation (4.14)
is easy to verify. A simple comparison of the estimates obtained from (4.14)
with the results obtained by the ar-function provided in the MatLab systems
identification toolbox reveals that both methods are identical. The situation
is slightly more difficult in case of the variance estimates (4.15) and model
probabilities (4.18). Since the model probabilities depend on the variance
estimates, we may assume that both are correct as soon as we have verified
(4.18). Hence we decided to use two synthetic AR-models with known di-
mension and estimate the most probable model orders implied by (4.18). The
optimal model order is the index of the last lattice filter stage whos model
probability (4.18) is larger 0.5.
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Probabilites for reflection coefficients for synthetic AR(3) model

Figure 4.3: Probabilities for reflection coefficients for a synthetic 3-rd order
AR model (see the text for details of the model). The model was estimated
from a time series with 400 samples. The 3-rd reflection coefficient is the last
lattice filter stage that got a probability larger than 0.5. This implies that
the model order estimation was performed correctly.

This empirical test has been done using an 8-order AR model that has
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been used in [RF95] for exactly the same purpose. The poles of the generator
transfer function are located at (−0.4572 ± j0.7765), (−0.8284 ± j0.1079),
(−0.5979 ± j0.6138) and (−0.5976 ± j0.5364). We also performed a second
test with a third order model whos transfer function poles are located at (0.9)
and (−0.5 ± j0.5). The probabilities for reflection coefficients obtained for
one simulation run have been plotted in figure 4.2 (for the 8-th order model)
and in figure 4.3 (for the 3-rd order model).

Having shown that the algorithms work correctly on synthetic data, we
will now apply the Bayesian lattice filter to sleep EEG. The emphasis of these
experiments is to show that Bayesian preprocessing provides useful inputs for
an analysis of all night sleep as was proposed in chapter 2. The data used
in the experiments reported below has been taken from 6 EEG channels
that had been recorded at electrodes Fp1, C3, O1, Fp2, C4 and O2 placed
according to the international 10-20 system. The question we try to answer
with the experiments described below is whether, apart from the theoretical
necessity formulated in proposition 4.1.1, we have some practical advantage
from using a Bayesian technique. Of course, we have already shown the first
advantage: we can use (4.18) to perform model selection. It would be of
considerable interest to show that low probability for reflection coefficients
corresponds to segments that are judged as suspicious by human experts. In
order to test that, we used a database consisting of segments of 15 different
subjects that have been specifically marked for artifacts.

The experiments aim to show that the posterior probability P (Im|D) is
indeed a measure that captures the reliability of coefficients extracted from
some data. We will try to detect segments marked as artifacts by human
experts. However, we do not argue that the proposed measure mimics the
expert opinion about artifacts. It only works if the data contaminated by
artifacts contain almost no information. Some artifacts, e.g. ECG, and small
contaminations in general will not lead to lower reliability. Hence this method
will not recognize such artifacts.

The data were scored by human experts on a one second basis as either
contaminated by some artifact - where different artifacts have been con-
sidered separately - or as being clean. All together we have 213664 clean
segments and 115736 segments marked as artifacts. Since our recordings are
sampled at different rates, we had to resample3 to a common frequency of
100 Hz. After resampling, we used two seconds windows and an offset of
one second to estimate 3 reflection coefficients and the corresponding model
probabilities.

In order to assess the correlation of our reliability measure with the ex-

3In these experiments we used the MATLAB signal processing function “resample”.
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perts’ opinion on artifacts, we performed two tests. In a first experiment we
tried to detect so called movement artifacts by applying a rejection thresh-
old to the probability of the first lattice filter stage. In general we want to
have only few false positives, therefore we aim at a specificity of 0.99. The
data used to set the threshold were excluded from any further study. Accu-
mulating results from 7 different subjects, we get a sensitivity of 0.298 and
a specificity of 0.974. In table 4.1 we see that there is some inter-subject
variation.

Table 4.1: Sensitivities and specificities for 7 subjects

sens. 0.26 0.13 0.37 0.59 0.21 0.27 0.27
spec. 0.95 0.99 0.99 0.99 0.90 0.99 0.99

The setup of the first experiment is suboptimal because the reliability
measure can only indicate a general problem with the reliability of a feature.
It is not designed to separate different artifacts. Hence in a second experiment
we looked whether we can find a correlation between low reliability and
segments contaminated with some artifact. The critical point, where we
would better suggest not to use a particular model, is at probability 0.5.
Using this threshold, we find 2321 segments marked as contaminated and
only 504 clean segments. Hence both experiments suggest that there is a
correlation between artifacts and our reliability measure. However, there are
some differences between expert opinions and the indications based on (4.18):
Even if we are restrictive and request that all three lattice stages have to be
extremely implausible (we request that ∀m of a segment P (Im|D) < 0.07) 4,
we still get 3 samples marked as “clean” by experts.

Despite this disagreement, we still believe that the estimates obtained
by (4.18) is a useful quantity to assess the reliability of features. In order
to show that, we have extracted 3 reflection coefficients5 from all 6 EEG
channels. The data was taken from healthy subjects of different gender and
age. We extracted one coefficient for each second of the entire night. The
coefficients were estimated using a two seconds window and one seconds

4Note that this is equivalent to suggesting that the data are pure noise.
5Extracting 15 reflection coefficients together with variances and model probabilities

revealed that more than 80% of all epochs of one second length require model orders less
than 5. The “magic number” 3 came from investigating how many reflection coefficients
are necessary for supervised classification of Rechtschaffen & Kales (R & K) sleep stages
wake, rapid eye movement (REM) and delta (combined R & K stages 3 and 4). Details
are reported in [SRR+99] and in chapter 5.



CHAPTER 4. BAYESIAN PREPROCESSING 46

overlap. Figure 4.4 provides an illustration for one all night recording. It
shows the most probable value of reflection coefficient 1, the corresponding
variances and model probabilities extracted at electrode C3. The plots show
the entire night. For comparison we also see the corresponding Rechtschaffen
and Kales (R & K) scoring. It is clearly visible that there is a correlation
between the coefficient and the sleep stages.
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Figure 4.4: Reflection coefficient 1, the corresponding variance and model
probabilities extracted for an entire night. We can clearly identify a correla-
tion with the corresponding R & K scoring shown below.

In order to assess whether the model probability (4.18) is a useful indi-
cator of unreliable data, we asked clinical experts for their opinion about
such segments where the first lattice filter stage had a low probability. In
almost every case the opinion was that the segment was contaminated by
a signal that is physiologically implausible. Figure 4.5 gives an impression
of the global situation for a recording with many segments of low probabil-
ity. It shows the probability for the first reflection coefficient for all 6 EEG
channels for the first 1000 seconds of the night. The experts were provided
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Figure 4.5: Probabilities for reflection coefficient 1 shown for the first 1000
seconds of one of the recordings. The data is representative for the entire
night. This recording contains many segments where the model is rather im-
probable. For every such segment the corresponding estimate of the reflection
coefficient is similar to estimates obtained during wake. Consultations with
clinical experts ruled out that there might be a physiological origin of this
effect. The effect is most probably caused by some technical problem in the
recording equipment.

with plots that showed both the probability for the coefficient and the cor-
responding data segment. An example of such artifacts is provided in figure
4.6. It shows 10 seconds of data recorded at electrode Fp2 together with the
probability of the first reflection coefficient. We can clearly identify bursts
of noise that cause the low probabilities of the coefficients. Detecting these
events is of vital importance, since the corresponding feature values are close
to the estimates obtained from segments classified as wake. Hence if such
physiologically implausible noise bursts occur, the corresponding prediction
will missinterpret this artefact as an arousal.
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Figure 4.6: These plots show 10 seconds of data from electrode Fp2 and the
corresponding probabilities for the first reflection coefficient. We see that
low probabilities are caused by bursts of noise. Consultations with clinical
experts did not explain the cause of these bursts, however according to their
opinion they have no physiological origin.

4.4 Summary

The important contributions in this chapter are proposition 4.1.1, where we
prove that preprocessing must be Bayesian in order to allow optimal deci-
sions to be taken in a later classification stage. Furthermore we derived a
Bayesian analysis for a lattice filter representation of an AR-process. As a
result we obtain a posterior distribution over reflection coefficients and a pos-
terior probability for each lattice filter stage. The proposed signal processing
technique was then applied to sleep EEG. We were especially interested in
an assessment whether the posterior probability of the lattice filter stage is
useful to determine artifacts in the signal. In an experiment we tried to de-
tect artifacts in a manually marked database. This experiment revealed that
only a small percentage of all artifacts could be detected. In fact the human
opinion on artifacts and the white noise hypothesis underlying the approach
taken here are quite different. However, when presenting the flagged seg-
ments to human experts they agreed in most cases that the data contained
some signal that had no physiological origin. Low probability of a lattice
filter stage is coupled with feature estimates that are similar to the estimates
observed during wake. Thus conditioning on these estimates, a classifier will
predict high probability for stage wake, which is not the cause of the data.
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In this perspective the model probabilities of the lattice filter stage can be
seen as a promising means to avoid such failure. This observation motivates
the approach to time series classification laid out in chapter 7. There we will
treat both feature and model uncertainties in the correct Bayesian way: by
marginalizing them out.

Appendix A

In this appendix we show how to derive (4.13) from (4.12). We start solving
the marginalization integral ∫ ∞

0

p(ρm, β|X )dβ

by substituting u = 1
2
β((εm + ρmrm)T (εm + ρmrm)). This leads to:

p(ρm|X ) ∝ π−
N
2 0.5

(
(εm + ρmrm)T (εm + ρmrm)

)−N
2

∫ ∞

0

u
N
2
−1 exp(−u)du.

Using the definition of the Gamma function:

Γ(
N

2
) =

∫ ∞

0

u
N
2
−1 exp(−u)du,

we get:

p(ρm|X ) ∝ π−
N
2 0.5Γ(

N

2
)
(
(εm + ρmrm)T (εm + ρmrm)

)−N
2 .

This is a t-distribution with N − 1 degrees of freedom, which is more easily
seen by developing a Taylor series expansion around the most probable value
for ρm. The most probable value, ρ̂m, is found by solving a least squares
problem and reads as:

ρ̂m = − rmT εm

rmT rm
.

As the gradient at ρ̂m vanishes, we get the following exact Taylor series
expansion:

(εm + ρmrm)T (εm + ρmrm) = (εm + ρ̂mrm)T (εm + ρ̂mrm) + rmT rm(ρm − ρ̂m)2.

Plugging this expansion into p(ρm|X ), we get:

p(ρm|X ) ∝ 0.5π−
N
2 Γ(

N

2
)
(
(εm + ρ̂mrm)T (εm + ρ̂mrm)

)−N
2 (4.19)

(
1 +

(ρm − ρ̂m)2

(N − 1)s2

)−N
2

︸ ︷︷ ︸
∝t-distribution

,
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with

s2 =
(εm + ρ̂mrm)T (εm + ρ̂mrm)

(N − 1)rmT rm
(4.20)

denoting the variance of the t-distribution. The normalization constant of
the unnormalized t-distribution in (4.19) is given as:

∫ ∞

−∞

(
1 +

(ρm − ρ̂m)2

(N − 1)s2

)−N
2

dρm =
√

2πs(N − 1)0.5 Γ(N−1
2

)

Γ(N
2
)

.

Given a sufficiently large number of data points, e.g. N > 50, we are allowed
to use the normal distribution instead of the t-distribution. As the limit

lim
N→∞

(N − 1)0.5 Γ(N−1
2

)

Γ(N
2
)

= 1,

we get as a final expression for the posterior distribution over the m-th order
reflection coefficient:

p(ρm|X ) ∝ 0.5π−
N
2 Γ(

N

2
)
(
(εm + ρ̂mrm)T (εm + ρ̂mrm)

)−N
2
√

2πs

1√
2πs

exp

(
− 1

2s2
(ρm − ρ̂m)2

)

︸ ︷︷ ︸
normalized Gaussian

,

which is our final result (4.13) from the methods section. A simplification
of the expression of the variance, s2, from (4.20) is also possible. Making
the most probable reflection coefficient explicit and using the identity (see
[Lju99]): εmT εm ≡ rmT rm, we get:

s2 =
1− (ρ̂m)2

2(N − 1)
,

which is the result reported in (4.15).



Chapter 5

A Bayesian wrapper

In this chapter we will treat input selection for a radial basis function (RBF)-
like classifier within a Bayesian framework. We approximate the posterior
distribution over both model coefficients and input subsets by samples drawn
with Gibbs updates and reversible jump moves. According to the terminology
used in [KJ97], where an algorithm that uses the final classifier for feature
subset selection is refered to as wrapper, we call the approach the Bayesian
wrapper.

Using some public datasets, we compare the classification accuracy of
the method with a conventional automatic relevance determination (ARD)
scheme. These datasets are also used to infer the posterior probabilities
of different input subsets. A final experiment reveals that a rather small
number of input features suffices to build the sleep analyzer developed in
the EC funded Biomed project SIESTA1. It should be mentioned that this
chapter is an extended version of [Syk00]. Parts of the results have also been
published as extended abstract in [SRR+99].

5.1 Introduction

Methods that aim at determining relevance of inputs have always interested
researchers in various communities. Classical feature subset selection tech-
niques, as reviewed in [DK82], use search algorithms and evaluation criteria
to determine one optimal subset. Although these approaches can improve
classification accuracy, they do not explore different equally probable sub-
sets. Automatic relevance determination (ARD) is another approach which
determines relevance of inputs. ARD is due to [Nea96] who uses Bayesian

1For a detailed reference to the project see the Acknowledgements at the end of the
thesis.

51
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techniques, where hierarchical priors penalize irrelevant inputs.
Our approach is also “Bayesian”. Relevance of inputs is measured by a

probability distribution over all possible feature subsets. This probability
measure is determined by the Bayesian evidence of the corresponding mod-
els. The general idea was already used in [PS96] for variable selection in
linear regression models. Our interest is different since we select inputs for
a nonlinear classification model. We aim at an approximation of the true
distribution over all different subsets. As the number of subsets grows ex-
ponentially with the total number of inputs, we can not calculate Bayesian
model evidence directly. We need a method that samples efficiently across
different dimensional parameter spaces. Besides the jump diffusion sampler
from [GM94] and the product space approach from [CC95], the most general
method that achieve this is the reversible jump Markov chain Monte Carlo
sampler (reversible jump MC) recently proposed in [Gre95]. The approach
was successfully applied by [RG97] to determine a probability distribution in
a mixture density model with a variable number of kernels and in [HM98] to
sample from the posterior of RBF regression networks with a variable num-
ber of kernels. A Markov chain that switches between different input subsets
is useful for two tasks; counting how often a particular subset was visited
gives us a relevance measure of the corresponding inputs; for classification,
we approximate the integral over input sets and coefficients by summation
over samples from the Markov chain.

The next sections will show how to implement such a reversible jump
MC and apply the proposed algorithm to classification and input evaluation
using some public datasets. Though the approach could not improve the
MLP-ARD scheme from [Nea96] in terms of classification accuracy, we still
think that it is interesting. We can assess the importance of different feature
subsets which is different than importance of single features as estimated by
ARD.

5.2 Methods

The classifier used in this chapter is a RBF like model. Inference is performed
within a Bayesian framework. When conditioning on one set of inputs, the
posterior over model parameters is already multimodal. Therefore we resort
to Markov chain Monte Carlo (MCMC) sampling techniques to approximate
the desired posterior over both model coefficients and feature subsets. In
the following subsections we will propose an appropriate architecture for the
classifier and a hybrid sampler for model inference. This hybrid sampler
consists of two parts. We use (a) Gibbs updates ([GG84]) to sample when
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conditioning on a particular set of inputs, and, (b) reversible jump moves
that carry out dimension switching updates.

5.2.1 The classifier

In order to allow input relevance determination by Bayesian model selection,
the classifier needs at least one coefficient that is associated with each input.
Roughly speaking, the probability of each model is proportional to the like-
lihood of the most probable coefficients, weighted by their posterior width
and divided by their prior width. The first factor always increases when us-
ing more coefficients (or input features). The second will decrease the more
inputs we use. Together this gives a peak for the most probable model. A
classifier that satisfies these constraints is the so called classification in the
sampling paradigm. We model class conditional densities and, together with
class priors, express posterior probabilities for classes. In neural network
literature this approach was first proposed in [Tr̊a91]. We use a model that
allows for overlapping class conditional densities:

p(x|k) =
D∑

d=1

wkdp(x|Φd) , p(x) =
K∑

k=1

Pkp(x|k) (5.1)

Using Pk for the K class priors and p(x|k) for the class conditional densi-
ties, (5.1) can be used to calculate posterior probabilities for the classes as
P (k|x) = Pkp(x|k)/p(x). We choose the component densities, p(x|Φd), to
be Gaussian with restricted parametrisation. Each kernel is a multivariate
normal distribution with a mean and a diagonal covariance matrix. For all
Gaussian kernels together, we get 2 ∗D ∗ I parameters, with I denoting the
current input dimension and D denoting the number of kernels. Apart from
kernel coefficients, Φd, (5.1) has D coefficients per class, wkd, indicating the
prior kernel allocation probabilities and K class priors. Model (5.1) allows
to treat labels of patterns as missing data. That is we can use both labeled
and unlabeled data for model inference. In this case training is carried out
using the likelihood of observing inputs and targets:

p(T ,X|Θ) = ΠK
k=1Π

Nk
nk=1Pkpk(xnk

|Θk)Π
M
m=1p(xm|Θ), (5.2)

where T denotes labeled and X unlabeled training data. In (5.2) Θk denotes
all coefficients the k-th class conditional density depends on. We further use
Θ for all model coefficients, nk as number of samples belonging to class k
and m as index for unlabeled samples. To make Gibbs updates possible, we
further introduce two latent allocation variables. The first one, d, indicates
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the kernel number each sample was generated from; the second one is the
unobserved class label c, introduced for unlabeled data. A typical approach
for training models like (5.1), e.g. [GJ94] and [SS95], is the EM algorithm,
which is closely related to the Gibbs sampler introduced in the next subsec-
tion. One disadvantage of mixture models like (5.1) is that these models are
not identified: The likelihood function,(5.2), is invariant to permutations of
component indices. In any setting, where only one set of coefficients is used
for predictions, this need not necessarily bother us. Howeve when applying
sampling techniques, we face a completely different situation: Different sam-
pled instances of one component index may contain parameters belonging
to different components, a property which is called label switching. Label
switching really makes problems: First, we are in trouble when we want
to look at the component densities. But even if we are not interested in the
properties of one component, label switching prevents any reasonable checks2

of the Markov chain. For mixture models, which are up to missing proba-
bilities for classes (and some target labels) identical to (5.1), the problem is
either solved by parameter constraints (see e.g. [RG97] and [Rip96]) or by
reparametrisation (see [RM99]). Another approach is due to [Ste00], who
proposed a method how to obtain appropriate permutations of the sampled
coefficients.

5.2.2 Fixed dimension sampling

In this subsection we will formulate Gibbs updates for sampling from the
posterior when conditioning on a fixed set of inputs. Figure 5.1 shows the
directed acyclic graph (DAG) that illustrates the conditional independence
structure introduced by these latent variables. It also contains prior specifi-
cations that follow largely the settings of [RG97].

For all but the kernel variances, we know how to specify reasonable priors.
Hence a detail in figure 5.1 worth mentioning is that we use a hierarchical
prior specification for the inverse kernel variances. In order to allow the hyper
parameter β to evolve, it has a hyper prior, controlled by the two hyper hyper
parameters g and h.

According to [GRe96], Gibbs sampling is a special case of single compo-
nent Metropolis Hastings updates, where the proposal distribution is the full
conditional3 of the updated parameter. Hence invariance of the target distri-
bution is guaranteed by the detailed balance condition met by all Metropolis

2We are interested in an assessment of convergence and whether the Markov chain
visits different modes of the posterior distribution, which is called good mixing.

3We condition on the current values of all other coefficients occurring in the model.
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Figure 5.1: This is the directed acyclic graph of the model including all
hyper parameters. Latent (unobserved) variables are shown as circles, ob-
served variables are shown as squares. The latent allocation variable d makes
the observations conditionally independent from the allocation probabilities.
This “trick” allows Gibbs sampling. Without this variable, we would have
to use Metropolis-Hastings-like sampling for the entire model.
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Hastings samplers. In order to allow sampling from the full conditional, we
have to choose priors over coefficients from their conjugate family:

• Each component mean, md, is given a Gaussian prior: md ∼ Nd(ξ, κ).

• The inverse variance of input i and kernel d gets a Gamma prior:
σ−2

id ∼ Γ(α, βi).

• All d variances of input i have a common hyperparameter, βi, that has
itself a Gamma hyperprior: βi ∼ Γ(g, hi).

• The mixing coefficients, wk, get a Dirichlet prior: wk ∼ D(δw, ..., δw).

• Class priors, P , also get a Dirichlet prior: P ∼ D(δP , ..., δP ).

The quantitative settings are similar to those used in [RG97]: Values for α are
between 1 and 2, g is usually between 0.2 and 1 and hi is typically between
1/R2

i and 10/R2
i , with Ri denoting the i’th input range. The mean gets a

Gaussian prior centered at the midpoint, ξ, with diagonal inverse covariance
matrix κ, with κii = 1/R2

i . The prior counts δw and δP are set to 1 to give
the corresponding probabilities non-informative proper Dirichlet priors.

The Gibbs sampler uses updates from the full conditional distributions in
(5.3). For notational convenience we use Θk for the parameters that deter-
mine class conditional densities. We use m as index over unlabeled data and
cm as latent class label. The index for all data is n, dn are the latent kernel
allocations and nd is the number of samples allocated by the d-th component.
One distribution does not occur in the prior specification, namely Mn(1, ...)
which is a multinomial - 1 distribution. Finally we need some counters: m1

... mK are the counts per class and m1k .. mDk count kernel allocations of
class-k patterns. The full conditional of the d-th kernel variances and the
hyper parameter βi contain i as index of the input dimension. In these full
conditionals we express each σ−2

i,d separately. In the expression of the d-th
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kernel mean, md, we use V d to denote the entire covariance matrix.

p(cm|...) = Mn

(
1,

{
Pkp(xm|Θk)∑
k Pkp(xm|Θk)

, k = 1..K

})
(5.3)

p(dn|...) = Mn

(
1,

{
wtndp(xn|Φd)∑
l wtndp(xn|Φd)

, d = 1..D

})

p(β
i
|...) = Γ

(
g + Dα, hi +

∑

d

σ−2
d,i

)

p(wk|...) = D (δw + m1k, ..., δw + mDk)

p(P |...) = D (δP + m1, ..., δP + mK)

p(md|...) = N (
(ndV

−1
d + κ)−1(ndV

−1
d x̄d + κξ), (ndV

−1
d + κ)−1

)

p(σ−2
i,d |...) = Γ


α +

nd

2
, βi +

1

2

∑

xn∀n|dn=d

(xn,i −md,i)
2




5.2.3 Moving between different input subsets

The core part of this sampler are reversible jump updates, where we move
between different feature subsets. The probability of a feature subset will
be determined by the corresponding Bayesian model evidence and by an
additional prior over number of inputs. In accordance with [PS96], we use
the truncated Poisson prior

p(I) = 1/

(
Imax

I

)
c
λI

I!
,

where c is a constant and Imax is the total number of inputs. Reversible
jump updates are generalizations of conventional Metropolis-Hastings up-
dates, where moves are bijections (x, u) ↔ (x′, u′). For a thorough treatment
we refer to [Gre95]. In order to switch subsets efficiently, we will use two
different types of moves. The first move consists of a step where we add
one input chosen at random and a matching step that removes one randomly
chosen input. A second move exchanges two inputs which allows “tunneling”
through low likelihood areas.

Adding an input, we have to increase the dimension of all kernel means
and diagonal covariances. These coefficients are drawn from their pri-
ors. In addition, the move proposes new allocation probabilities in a semi-
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deterministic way. Assuming the ordering, wk,d ≤ wk,d+1, we propose

δp = Beta(ba, bb + I)

∀d ≤ D/2

{
w′

k,D+1−d = wk,D+1−d + wk,dδp

w′
k,d = wk,d(1− δp).

(5.4)

The matching step proposes the removal of a randomly chosen input. Re-
moving corresponding kernel coefficients is again combined with a semi-
deterministic proposal of new allocation probabilities, which is exactly sym-
metric to the proposal in (5.4). We accept births with probability:

αb = min

(
1, lh. rt.× p(I + 1)

p(I)

(
1

R′
√

2π

)D ∏
D

exp

(
−0.5

1

R′2 (µ′d − ξ′d)
2

)

×
(

β
′α

Γ(α)

)D ∏
D

(σ
′−2
d )α−1 exp(−β′σ

′−2
d )

× dm/(I + 1)

bm/(Imax − I)
× 1

(
1
R′
√

2π
)D ∏

D exp
(
−0.5 1

R
′2 (µ

′
d − ξ′d)

2
)

× 1(
β′α
Γ(α)

)D ∏
D(σ

′−2
d )α−1 exp(−β′σ

′−2
d )

)
. (5.5)

The first line in (5.5) are the likelihood and prior ratios. The prior ratio
results from the difference in input dimension, which affects the kernel means
and the prior over number of inputs. The first term of the proposal ratio
is from proposing to add or remove one input. The second term is the
proposal density of the additional kernel components, which cancels with
the corresponding term in the prior ratio. Due to symmetry of the proposal
(5.4) and its reverse in a death move, there is no contribution from changing
allocation probabilities. Death moves are accepted with probability αd =
1/αb.

The second type of move is an exchange move. We select a new input and
one from the model inputs and propose new mean coefficients. This gives
the following acceptance probability

αc = min

(
1, lh. ratio×

(
1
R′
√

2π
)D ∏

D exp
(
−0.5 1

R′2 (µ
′
d − ξ′d)

2
)

(
1
R′
√

2π
)D ∏

D exp
(
−0.5 1

R′2 (µd − ξd)2
) (5.6)

× cm/I

cm/(Imax − I)
×

∏
DN (µd|...)∏
DN (µ′d|...)

)
.
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Table 5.1: Summary of experiments

Data avg(#) max(#) RBF (%,na) MLP (%,nb)
Ionosphere 4.3 9 (91.5,11) (95.5,4)

Pima 4 7 (78.9,11) (79.8,8)
Wine 4.4 8 (100, 0) (96.8,2)

The first line of (5.6) are again likelihood and prior ratios. For exchange
moves, the prior ratio is just the ratio from different values in the kernel
means. The first term in the proposal ratio is from proposing the exchange
of an input. The second term is the proposal density of new kernel mean
components. The last part stems from proposing new allocation probabilities.

5.3 Experiments

Although the method can be used with labeled and unlabeled data, the
following experiments were performed using only labeled data. For all ex-
periments we set α = 2 and g = 0.2. The first two data sets are from
the UCI repository4. We use the Ionosphere data, which has 33 inputs, 175
training and 176 test samples. For this experiment, we use 6 kernels and
set h = 0.5. The second data is the wine recognition data which provides
13 inputs, 62 training and 63 test samples. For this data, we use 3 kernels
and set h = 0.28. The third experiment is performed with the Pima data
provided by B. D. Ripley5. For this one, we use 3 kernels and set h = 0.16.

For all experiments we draw 15000 samples from the posterior over co-
efficients and input subsets. We discard the first 5000 samples as burn in
and use the rest for predictions. Classification accuracy is compared with
an MLP classifier using R. Neal’s hybrid Monte Carlo sampling with ARD
priors on inputs. These experiments use 25 hidden units. Table 5.1 contains
further details: avg(#) is the average and max(#) is the maximal number
of inputs used by the hybrid sampler; RBF (%, na) is the classification accu-
racy of the hybrid sampler and the number of errors it made that were not
made by the ARD-MLP; MLP(%, nb) is the same for the ARD-MLP. We
compare classifiers by testing (na, nb) against the null hypothesis that this
is an observation from a Binomial Bn(na +nb, 0.5) distribution. This reveals

4Available at http://www.ics.uci.edu/ mlearn/MLRepository.html.
5Available at http://www.stats.ox.ac.uk
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that neither difference is significant. Hence we could compete with Neal’s
ARD-MLP, a method that usually obtains high generalization accuracies.

The real benefit from using the hybrid sampler is that the inferred proba-
bilities tell us which feature subsets contribute to an explanation of the target
variables. Figure 5.3 shows the occurrence probabilities of feature subsets and
features. Note that table 5.1 also shows the details about how many features
were used in these problems. Especially the results from Ionosphere data are
interesting since on average we use only 4.3 out of 33 input features. For
ionosphere and wine data the Markov chain visits about 500 different input
subsets within 10000 samples. For the Pima data the number is about 60
and an order of magnitude smaller.
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Figure 5.2: Probabilities of inputs and input subsets measuring their rele-
vance.

In the next experiment we apply the Bayesian wrapper to the problem of
sleep EEG classification that was introduced in chapter 2. We are interested
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in assessing the discriminative power of features obtained from different pre-
procesing techniques. The sleep analyzer motivated in chapter 2 will predict
probabilities for the states wake, REM and delta sleep. Hence we aim at
such feature subsets that are usefulfor separating these states. Therefore the
data used in this experiment contains only samples that were labeled wake,
REM or stage 4. We used data from 4 selected recordings.

Preprocessing was done using the following algorithms6, providing one
estimate for each second of the all night recording:

• Power spectral density and coherence function estimates calculated by
using a fast Fourier transform [FRKZ97]. Both methods provide 9
estimates obtained by smoothing over 9 different frequency bands.

• Auto regressive filter (AR)-coefficients estimated via Kalman filtering.
The Kalman filter was implemented for a 10-th order AR-model [SP99].

• Three Hjorth [Hjo70] complexity measures and a nonlinear combination
of them.

• An embedding dimension complexity measure [RR98].

• Coefficients obtained from a 10-th order lattice filter estimated by the
technique reported in chapter 4.

The difficulty of this FSS was that the algorithms used different window
lengths. Together with the 30 seconds based R&K scorings, this means that
features cannot be compared in the first place. Features with longer windows
will be preferred. In order to avoid that longer windows are an advantage, we
decided to run the FSS with the median segment of each 30 seconds epoch.
Resampling to equal priors, we get 546 samples.

The Bayesian wrapper was used with data from electrode C3 only. This
reduces the total number of available features to 43. After drawing 10000
samples from the posterior distribution of model coefficients and different
dimensions, we discarded the first 5000 samples as burn in. The probabilities
of feature subsets observed in the remaining samples are plotted in figure 5.3.
The most probable feature subset found in this evaluation has a probability
of Pmp = 0.698. The feature variables contained in the subset are listed in
table 5.2.

6I would like to express gratitude to all who provided the feature estimates. The FFT
based features have been calculated by P. Rappelsberger and O. Filz. The Kalman filter
AR-coefficients have been provided by A. Schloegl. The Hjorth coefficients have been
obtained from A. Varri and M. Koivuluoma. Finally the stochastic complexity has been
provided by I. Rezek and S. Roberts.
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Figure 5.3: Probabilities of input subsets measuring their relevance.

Table 5.2: Most probable feature subset at electrode C3

Bayesian reflection coefficient 1
Bayesian reflection coefficient 3

Hjorth coefficient, cmplx./(act. * mob.)

As a final remark, it seems important to mention that the result suggested
by the Bayesian technique is comparable to the result reported in [SRR+99].
In [SRR+99], conventional search algorithms and feature evaluation criteria
have been used together with a statistical hypothesis test to determine the
optimal subset. The results reported there suggest that between 2 and 3
features suffice. Both the complexity measures and the reflection coefficients
are reported to be the most useful ones for classifying sleep.

5.4 Summary

In this chapter we have evaluated a hybrid sampler that uses Gibbs up-
dates and reversible jump moves to approximate the posterior distribution
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over parameters and input subsets in nonlinear classification problems. The
classification accuracy of the method could compete with R. Neals’ MLP-
ARD-implementation. However, the real advantage of the Bayesian wrapper
is that it provides us with a relevance measure of feature subsets. This allows
to infer the optimal number of inputs and how many different explanations
the data provides.

The algorithm was applied to feature subset selection in a sleep classifi-
cation task. We found the Bayesian reflection coefficients as the most useful
ones. The result suggests that instead of extracting 10 coefficients it suffices
to extract the first 3 coefficiets.



Chapter 6

A Bayes’ inferred generative
classifier

In this chapter we propose a Bayesian treatement of a generative classifier.
We approximate the posterior over model parameters by an ensemble tech-
nique. This learning scheme, also known as variational approximation of the
posterior, allows us to perform model selection. Variational inference pro-
vides us with an approximation of the log evidence of the model that can be
used to find the posterior probabilities of different model classes. In order
to assess the properties of the proposed approach, we perform experiments
with various synthetic problems. Practical relevance of the method is demon-
strated implementing a sleep analyzer for the problem formulated in chapter
2.

6.1 Introduction

In this chapter we propose a Bayesian learning scheme for a generative clas-
sifier. In order to allow both efficient inference and predictions, we aim at an
analytic solution. That is, we try to get a parameterized representation of the
posterior. The nonlinearity of the model does not permit an exact solution
as would be possible for generalized linear models. Thus we are faced with
two choices: we can fit the posterior by using a Laplace approximation or
a variational approximation. Especially the latter has recently been used as
tool for inference in graphical models (see e.g. [JGJS99] and [Fre98]) and for
Bayesian inference of various models (see e.g. [Mac97], [GB00]). In particu-
lar, [Att99] proposes a variational Bayesian approach for Gaussian mixture
models, which show some similarity with the generative classifier used in this
chapter.

64
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Our preference for a Bayesian treatment of a latent variable model is
motivated by several requirements to the inference process and the model:

• We are interested in reliably classifying some data as belonging to one
of k classes.

• During learning, we would like to be able to use unlabeled data. As
long as unlabeled data was obtained from the same distribution as the
labeled samples, their use will improve inference of supervised models.
In many domains labeled data is expensive to get, whereas unlabeled
data are obtained easily. Hence there is a considerable interest in tech-
niques that can use unlabeled data to improve supervised learning.

• The trained model should provide some deeper insight in the way a
particular classification result was achieved. That is we would like to
get more detailed information than just probabilities for class labels.

The requirement of being able to use training data without labels can be
approached by a generative model. The third requirement is met by gen-
erative models as well: they provide us with probabilities of the states of
latent variables. This information, however, is only meaningful if we have
means to choose appropriate model orders. In order to do model inference in a
Bayesian setting, we extend the DAG associated with the generative classifier
by adding model and hyperparameters. Due to efficiency constraints, both
during inference and predictions, we use a variational approximation of the
true posterior. This provides predictive distributions over model parameters
and an approximative estimate of the log-evidence. Despite all motivations
to use a generative model for classification, we should also remember that
such models have a disadvantage: we can not use these models in situations
where large input dimensions are paired with few training samples. One of
the experiments is dedicated to investigate this problem. In particular we
will show that if a model can not be inferred due to lack of data, the model
probability will be largest for the smallest model under consideration. Fur-
thermore we will also show that in such cases it suffices to add unlabeled data
to improve the model.

6.2 A generative model and its likelihood

function

In this chapter we will consider a variational Bayesian approach to obtain
a posterior distribution over latent variables and model coefficients for clas-
sifiers that are constructed from class conditional density estimates. This
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approach is known as classification in the sampling paradigm (e.g. [Rip96])
and goes back to [Daw76]. The classifier discussed here will use a semi-
parametric (mixture) representations of the class conditional densities. The
architecture is almost identical to the classifier that was proposed in chap-
ter 5. As we will see, the only difference is that we allow for one diagonal
covariance matrix for each Gaussian.

Recently a rising interest in generative models can be observed - even if
classification is the only interest. This interest is mainly motivated by the
probabilistic nature of the models. A directed acyclic graph (DAG) that
corresponds to this type of classifier is shown in figure 6.1. This DAG illus-
trates the probabilistic dependencies among target labels, k, the latent kernel
indicator1, d, and input variables denoted as x. Furthermore, all model pa-
rameters are linked probabilistically with these variables. These are the prior
probabilities for a class, P , the class conditional allocation probabilities, W ,
and the kernel coefficients, µ and σ. Last but not least the probability den-
sities over model coefficients depend on several prior probabilities. We use
δP and δW as prior counts in the Dirichlet distributions over P and W . Both
ξ and κ determine the Gaussian prior over µ. The Gamma prior over σ is
determined by the parameters α and β. For β we used a hierarchical spec-
ification. In order to avoid that kernels collapse2, we must use informative
priors that avoid zero variances. In such cases we better uses a hierarchical
setting which allows for some influence of the data on the value of such hy-
perparameters. This is a trick adopted from [RG97]. Consequently, we need
two parameters, g and h, that define this hyper-prior over β.

Compared with non-probabilistic models, the generative classifier has two
advantages:

• Generative models give us the possibility to solve missing data prob-
lems: we may infer the conditional probability density over missing
inputs during training and predictions and the conditional probability
of missing target labels during training. Both types of problems occur
frequently in practical settings.

• The model provides deeper insight into the problem structure: We do
not only get probabilities for classes, but probabilities for generating
kernels as well. With appropriate inference procedures such as the

1The kernel indicator is an unobserved variable that tells us which kernel generated
the variable x.

2A problem often encountered with mixture density models, as the likelihood ap-
proaches ∞ when one of the kernel means is equivalent to a data point and the variance
is set to 0.
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Figure 6.1: A directed acyclic graph (DAG) that shows the generative clas-
sifier used in this chapter. The DAG illustrates the probabilistic relations
between latent variables, observed variables and model coefficients. All ob-
served variables are drawn as squares whereas all latent quantities are repre-
sented with circles. This DAG anticipates that model inference is also carried
out in a probabilistic setting.

variational Bayesian scheme proposed in this chapter, we can guaran-
tee that the model order (number of kernels) is chosen appropriately.
This seems imperative to give these kernel probabilities some deeper
meaning. By using the appropriate model complexity we can avoid that
two identical kernels lead to an identifiability problem. (see chapter 5
for details of the identifiability problem)

Of course we have to pay a price for these advantages: As is pointed out
in [Rip96], modeling class conditional densities is much more difficult than
modeling posterior probabilities directly3.

Using mixture models as density estimators of class conditional densi-
ties, [Tr̊a91] proposes two different models that can be used to build the
classifier. One model assumes that the data are hard partitioned: Each mix-
ture component is entirely allocated to one class. The other model proposed
there is more appropriate for our purpouse as it allows for overlapping class

3As is for example mentioned in [Vap95], modeling a-posteriori probabilities is in turn
more complex then modeling class labels. However, having the class labels only, we do
not know how reliable they are.
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conditional densities

p(x|k) =
D∑

d=1

wkdp(x|Θd) (6.1)

p(x) =
K∑

k=1

Pkp(x|k).

Using Pk for the K class priors and p(x|k) for the class conditional den-
sities, we may express the posterior probabilities for classes as P (k|x) =
Pkp(x|k)/p(x). The D component densities p(x|Θd) can be any parameter-
ized density function. For sake of convenience we will use normal densities
with diagonal covariance matrices.

In order to parameterize the model, we will use the probability density
form of the likelihood function. According to the notation introduced in
(6.1), we use t to denote given class labels and x to denote inputs. Using ϕ
as model coefficients, the likelihood observing labeled data T and unlabeled
data X is

p(T ,X|ϕ) =
M∏

m=1

p(tm, xm)
N∏

n=1

p(xn). (6.2)

In order to allow inference, we have to link (6.2) with our model (6.1) to get

p(T ,X|ϕ) =
M∏

m=1

(
P (tm)

D∑

d=1

wd,tmp(xm|d)

)
(6.3)

N∏
n=1

(
K∑

k=1

P (k)
D∑

d=1

wd,kp(xn|d)

)

as the corresponding expression for the likelihood.

6.3 Variational approximation of the poste-

rior

In this section we derive a simple variational approximation to the posterior
over latent variables and model coefficients for the classifier introduced above.
We use here an approximation of the posterior by a mean field representation.
This approach has been used for a Bayesian treatment of various models. The
method is also known as ensemble learning. Such an approach was used in
[Mac97] for inference of a hidden Markov model with a discrete observation
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sequence. Recently [GB00] proposed such a mean field approximation for a
Bayesian treatement of a mixture of factor analyzers.

The key idea of variational techniques is to fit the approximating ensem-
ble to the Bayesian posterior by maximizing a lower bound of the logarithmic
partition function introduced by

∫
ϕ

log(p(ϕ)p(T ,X|ϕ))dϕ. In a Bayesian un-

derstanding the partition function corresponds to the normalization constant
or model evidence.

The variational Bayesian approach as applied here to the posterior over
model coefficients and latent variables will use the following simplifying as-
sumptions:

• The posterior is modeled by a mean field expansion. That is:

p(ϕ|T ,X ) ≈
∏

∀ϕ
l

Q(ϕ
l
),

where ϕ
l
are all parameters that are modeled by the same approximat-

ing distribution.

• The logarithm of the partition function is bounded below by the fol-
lowing type of functional:

F (ϕ) =

∫

ϕ

log(
p(ϕ)p(T ,X|ϕ)

Q(ϕ)
)Q(ϕ)dϕ, (6.4)

where due to the mean field assumption, Q(ϕ) will have a factorial rep-
resentation. It should be mentioned that maximizing (6.4) is equivalent
to minimizing the variational free energy, −F (ϕ), which is a well-known
tool in statistical physics (see e.g. [Fey72]). By using Jensens inequal-
ity it is easy to show (see e.g. [JGJS99]) that (6.4) is indeed a lower
bound of the log evidence.

• During maximization of the functional (6.4), we will face the problem
that the log of the marginalization operation4 over latent variables is
not analytically tractable. Hence we will also bound this arithmetic
mean below by a geometric mean. This kind of lower bound is suggested
by [JJ00]:

D∑

dm=1

wd,tmp(xm|dm) ≤
D∏

dm=1

(
wdm,tmp(xm|dm)

Q(dm)

)Q(dm)

, (6.5)

4This marginalization operation is part of the likelihood function (6.3).
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where, apart from a minor difference, we have used the notation in-
troduced in (6.1). The difference is that we must fit one such Q(dm)
distribution for each training pattern. The same type of lower bound
will be necessary twice for all unlabeled data5.

Using these ideas, we are able to formulate a functional over Q-distributions
that has to be maximized to obtain a variational approximation of the pos-
terior over model coefficients and latent variables:

F(Q) =

∫

µ,σ,P,W,β

Q(µ)Q(σ)Q(P )Q(W )Q(β) (6.6)

(
log

[
P (µ)P (σ)P (P )P (W )P (β)

Q(µ)Q(σ)Q(P )Q(W )Q(β)

]

+
∑

n

(
log(P (tn)) +

∑

dn

(
Q(dn)

[
log(Wtn,dn)− I

2
log(2π)

− 0.5
∑

i

log(σ2
dn,i)− 0.5(xn − µ

dn
)T Σ−1

dn
(xn − µ

dn
)− log(Q(dn))

]))

+
∑
m

∑

km

Q(km)

[
log(Pkm) +

∑

dm

(
Q(dm)

(
log(Wkm,dm)− I

2
log(2π)

− 0.5
∑

i

log(σ2
dm,i)− 0.5(xm − µ

dm
)T Σ−1

dm
(xm − µ

dm
)

− log(Q(dm))

))
− log(Q(km))

])
dµdσdβdPdW

In (6.6) we largely use the same symbols as introduced above. In addition,
I, denotes the input dimension, and i serves as iterator over different inputs.
Before we maximize the functional (6.6) w.r.t the different Q-functions, it
seems appropriate to give two simple qualitative arguments that such itera-
tive procedure will indeed lead to the desired approximation of the posterior:
On one hand, it is easy to see that a (local) maximum of (6.6) corresponds
to a minimum of the Kullback-Leibler (KL) divergence between the product
of Q-distributions and the true posterior (see e.g. [JGJS99]); on the other
hand, the results obtained for the EM-algorithm, in their most general form
provided by [NH99], guarantee that maximizing (6.6) iteratively w.r.t. each
Q-function in turn will indeed reach such a (local) maximum. Hence we may
optimize (6.6) for each Q-function separately and formulate an algorithm
that will iterate over these maximization steps.

5We have to bound both the marginal operation over latent kernel indicators and
unknown class labels.
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6.4 Prior specification

The model and the priors that will be introduced below are almost identical
with chapter 5. The only difference is that the DAG in figure 6.1 allows
for one covariance matrix for each Gaussian component, whereas in chapter
5 we used a common covariance matrix for all kernels. Apart from model
coefficients the DAG in figure 6.1 also shows nodes that specify the parameter
priors. In this section, we will have a closer look at these priors. We would
like that our variational approximation leads to such Q-functions that have
known functional form. In order to obtain these simple Q-functions (in terms
of known distributions), we have to choose so called conjugate priors, as are
discussed in [BS94]:

• Each component mean, µd,i, is given a Gaussian prior: µd,i ∼
N1(ξi, κ

−1
ii ).

• The inverse variances are given a Gamma prior: σ−2
d,i ∼ Γ(α, βi).

• The hyper-parameter, βi, gets a Gamma hyper-prior: βi ∼ Γ(g, hi).

• The class conditional mixing coefficients, W k, get a Dirichlet prior:
W k ∼ D(δW , ..., δW ).

• Class priors, P , also get a Dirichlet prior: P ∼ D(δP , ..., δP ).

The quantitative settings are similar to those used in [RG97]: Values for α are
between 1 and 2, g is usually between 0.2 and 1 and hi is typically between
1/R2

i and 10/R2
i , with Ri denoting the i-th dimensional input range. The

mean, µi, gets a Gaussian prior centered at the midpoint, ξi, with inverse
variance κii = 1/R2

i . Both the prior counts δP and δW are set to 1 to give the
corresponding probabilities the most uninformative proper Dirichlet prior.

6.5 Maximizing with respect to Q-functions

After having formulated conjugate priors, maximization of the functional
(6.6) will lead to Q-functions with identical functional form as have the cor-
responding priors. In this section, we will consider maximizing each of these
Q-functions in turn. This has to be done by taking expectations with respect
to all other Q-distributions. The resulting expressions can be used in an al-
gorithm that will iteratively maximize (6.6) until a local maximum has been
reached. Measured in terms of a KL-distance, the Q-functions obtained by
this algorithm give the factorized distribution closest to the true posterior.
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Maximizing with respect to Q(dn)

Dropping all additive constants that have no effect on Q(dn), functional (6.6)
leads to

F(Q(dn)) =

∫

µ,σ,W

Q(µ)Q(σ)Q(W )
∑

dn

Q(dn)

(
log(Wtn,dn)− I

2
log(2π)

−0.5
∑

i

(
log(σ2

dn,i) + (xn,i − µdn,i)
2σ−2

dn,i

)− log(Q(dn))

)
dµdσdW. (6.7)

Maximizing the functional (6.7) with respect to Q(dn) is now a purely tech-
nical problem: First we have to take the expectations w.r.t each Q-functions
involved. We will consider each integral in turn and start by integrating out
Q(W )

∫

Wtn

log(Wtn,dn)Q(Wtn)dWtn (6.8)

=

∫ 1

Wtn,dn=0

(
log(Wtn,dn)

Γ(
∑D

d=1 cW
tn,d)

Γ(cW
tn,dn

)Γ(
∑

d 6=dn
cW
tn,d)

W
(cW

tn,dn
−1)

tn,dn
(1−Wtn,dn)(−1+

P
d6=dn

cW
tn,d)

)
dWtn,dn

= Ψ(cW
tn,dn

)−Ψ(
D∑

d=1

cW
tn,d),

which gives as a result an expression in terms of the posterior class conditional
allocation counts cW

tn,d and the Digamma function Ψ. The expectation <
log(σ2

dn,i) >Q(σ−2
dn,i)

gives

∫ ∞

0

log(σ2
dn,i)Q(σ−2

dn,i)dσ−2
dn,i = log(βdn,i)−Ψ(αdn,i), (6.9)

where Q(σ−2
dn,i) = Γ(αdn,i, βdn,i), and Ψ again denotes the Digamma function.

Finally, we have as the input data dependent part

∫ ∞

0

Q(σ−2
dn,i)dσ−2

dn,i

∫ ∞

−∞
Q(µdn,i)dµdn,i (6.10)

− 0.5
∑

i

(
(xn,i − µdn,i)

2 σ−2
dn,i

)

= (xn,i − µ̂dn,i)
2 + σ2

µdn,i

αdn,i

βdn,i

,
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where µ̂dn,i denotes the most probable value of the i-th dimensional compo-
nent of the dn-th kernel mean, σ2

µdn,i
is the corresponding variance and αdn,i

as well as βdn,i are again the parameters of the Q-function over the corre-
sponding inverse kernel variance, σ−2

dn,i. The maximizing Q-function Q(dn) is
given by:

Q(dn) =
exp(log(Q(xn, dn)))∑
dn

exp(log(Q(xn, dn)))
(6.11)

with

log(Q(xn, dn)) = Ψ(cW
tn,dn

)−Ψ(
D∑

d=1

cW
tn,d)−

I

2
log(2π)

− 0.5
∑

i

(
log(βdn,i)−Ψ(αdn,i) + (xn,i − µ̂dn,i)

2 + σ2
µdn,i

αdn,i

βdn,i

)

Maximizing with respect to Q(dm)

Maximizing (6.6) with respect to Q(dm) is done in a similar way as with re-
spect to Q(dn). First we drop all additive constants and rearrange summation
to get

F(Q(dm)) =

∫

µ,σ,W

Q(µ)Q(σ)Q(W )
∑

dm

Q(dm)

(∑

km

Q(km)

(
log(Wkm,dm)

− I

2
log(2π)− 0.5

∑
i

(
log(σ2

dm,i) + (xm,i − µdm,i)
2σ−2

dm,i

)

− log(Q(km))

)
− log(Q(dm))

)
dµdσdW, (6.12)

with Q(km) approximating the posterior probabilities for class km for all
unlabeled training data. Maximizing (6.12) with respect to Q(dm) requires
solving similar integrals as was the case during maximization of (6.7). Hence
we may use the results obtained above to get the maximizing Q-function
Q(dm) as

Q(dm) =
exp(log(Q(xm, dm)))∑
dm

exp(log(Q(xm, dm)))
(6.13)

with

log(Q(xm, dm)) =
∑

km

Q(km)

(
Ψ(cW

km,dm
)−Ψ(

D∑

d=1

cW
km,d)

)
− I

2
log(2π)

−0.5
∑

i

(
log(βdm,i)−Ψ(αdm,i) + (xm,i − µ̂dm,i)

2 + σ2
µdm,i

αdm,i

βdm,i

)
.
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Maximizing with respect to Q(km)

In oder to maximize (6.6) with respect to Q(km), we again drop all additive
constants to get the simplified relations

F(Q(km)) =

∫

W,P

Q(W )Q(P )
∑

km

Q(km)

(
log(Pkm) (6.14)

+
∑

dm

Q(dm) log(Wkm,dm)− log(Q(km))

)
dWdP.

Maximizing the functional (6.14) involves integrating out prior probabilities
for classes and the class conditional allocation probabilities. The maximizing
Q-function is obtained as

Q(km) = exp

(
Ψ(cP

km
)−Ψ(

∑

k

cP
k ) (6.15)

+
∑

dm

Q(dm)

(
Ψ(cW

km,dm
)−Ψ(

∑

k

cW
k,dm

)

))

/
∑

km

exp

(
Ψ(cP

km
)−Ψ(

∑

k

cP
k )

+
∑

dm

Q(dm)

(
Ψ(cW

km,dm
)−Ψ(

∑

k

cW
k,dm

)

))
.

Maximizing with respect to Q(µ
d
)

Restricting the kernel parameters to diagonal covariance matrices, the Q-
distribution over kernel mean coefficients factorizes into D·I univariate Gaus-
sians. For notational reasons it is more convenient to maximize (6.6) with
respect to Q(µ

d
), the Q-distribution over the d-th kernel mean. Ignoring all
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additive constants, we get the functional

F(Q(µ
d
)) =

∫

Σ−1
d

Q(Σ−1
d )Q(µ

d
)

[
−I

2
log(2π) (6.16)

− 0.5
∑

i

log(κ−1
i,i )

−0.5(µ
d
− ξ)T κ−1(µ

d
− ξ)

+
∑

n

Q(dn)(xn − µ
d
)T Σ−1

d (xn − µ
d
)

+
∑
m

Q(dm)(xm − µ
d
)T Σ−1

d (xm − µ
d
)

− log(Q(µ
d
))

]
dΣ−1

d dµ
d
.

The expression −0.5
∑

i log(κ−1
i,i )−0.5(µ

d
−ξ)T κ−1(µ

d
−ξ) is the contribution

from the Gaussian prior over the kernel mean µ
d
. In order to obtain the Q(µ

d
)

that maximizes the functional (6.16), we have to integrate out the inverse
kernel variance Σ−1

d . Thus we have to replace the inverse kernel covariance
matrix Σ−1

d by its expectation < Σ−1
d >Q(Σ−1

d ). We must consider an EM-like

marginalization with respect to Q(dn) for all labeled data and with respect
to Q(dm) for all unlabeled data. Some manipulations reveal that the optimal
Q(µ

d
) is Gaussian:

Q(µ
d
) = N (µ̂

d
, Σ−1

µd
) (6.17)

with

Σ−1
µd

= κ−1 +

(∑
n

Q(dn = d) +
∑
m

Q(dm = d)

)
< Σ−1

d >Q(Σ−2
d )

and

µ̂T

d
=

(
ξT κ−1 +

(∑
n

Q(dn = d)xT
n +

∑
m

Q(dm = d)xT
m

)

< Σ−1
d >Q(Σ−2

d )

)
Σµd

,

where µ̂
d

is the best estimate for the d-th kernel mean and Σµd
is the diagonal

covariance matrix of the Gaussian distribution. At this point it might be
useful to mention that < Σ−1

d >Q(Σ−1
d )= diag({αd/βd,i,∀i}).

Maximizing with respect to Q(Σ−1
d )

Assuming diagonal kernel covariance matrices, maximization of (6.6) with
respect to Q(Σ−1

d ) is best expressed for the i-th inverse variance, σ−2
d,i . Again,
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several additive constants in (6.6) can be dropped. We finally get a functional
that depends on Q(βi), Q(σ−2

d,i ) and Q(µd,i):

F(Q(σ−2
d,i )) =

∫

βi,µd,i,σ
−2
d,i

Q(βi)Q(σ−2
d,i )Q(µd,i)

(
log(p(σ−2

d,i )) (6.18)

− 0.5
∑

n

Q(dn = d)

[
log(σ2

d,i)σ
−2
d,i

(
(xn,i − µd,i)

2
)]

− 0.5
∑
m

Q(dm = d)

[
log(σ2

d,i)σ
−2
d,i

(
(xm,i − µd,i)

2
)]

− log(Q(σ−2
d,i ))

)
dβidµd,idσ−2

d,i ,

with

log(p(σ−2
d,i )) = const. + (αi − 1) log(σ−2

d,i )− σ−2
d,i βi.

In order to be able to maximize (6.18) with respect to Q(σ−2
d,i ), we have to

marginalize out both βi and µd,i. The Q-distribution Q(βi) is a Gamma
distribution with parameters gq

i and hq
i . Therefore, the expected value of

βi is < βi >Q(βi)=
gq

i

hq
i
. Furthermore we need the expectation of µd,i and

µ2
d,i with respect to a normal distribution. We get < µd,i >Q(µd,i)= µ̂d,i and

< µ2
d,i >Q(µd,i)= µ̂2

d,i + σ2
µd,i

. This allows to formulate the functional that we

need to maximize with respect to Q(σ−2
d,i )) as

F(Q(σ−2
d,i )) =

∫

σ−2
d,i

Q(σ−2
d,i )

(
(αi − 1) log(σ−2

d,i )− σ−2
d,i

gq
i

hq
i

(6.19)

− 0.5
∑

n

Q(dn = d)

[
log(σ2

d,i)σ
−2
d,i

(
(xn,i − µ̂d,i)

2 + σ2
µd,i

)]

− 0.5
∑
m

Q(dm = d)

[
log(σ2

d,i)σ
−2
d,i

(
(xm,i − µ̂d,i)

2 + σ2
µd,i

)]

− log(Q(σ−2
d,i ))

)
dσ−2

d,i .
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We identify the expression within the brackets as a logarithm of a Gamma
distribution, Γ(ασd,i

, βσd,i
), with

ασd,i
= αi + 0.5

(∑
n

Q(dn = d) +
∑
m

Q(dm = d)

)
(6.20)

βσd,i
=

gq
i

hq
i

+ 0.5

(∑
n

Q(dn = d)
(
(xn,i − µ̂d,i)

2 + σ2
µd,i

)

+
∑

n

Q(dm = d)
(
(xm,i − µ̂d,i)

2 + σ2
µd,i

))
.

Maximizing with respect to Q(βi)

In order to make the Gamma prior over inverse kernel variance less infor-
mative, we use a hierarchical setting. This hierarchical setting requires also
to determine a posterior over the hyper parameter β. This is again easier
to express in one dimension for βi. As usual, we drop all irrelevant additive
constants from (6.6) to obtain

F(Q(βi)) =

∫

βi,σ
−2
d,i

Q(βi)Q(σ−2
d,i )

(
(gi − 1) log(βi)− hiβi (6.21)

+
∑

d

(
αi log(βi)− βiσ

−2
d,i

)− log(Q(βi))

)
dβidσ−2

d,i

as the functional to be maximized with respect to Q(βi). As was already
obtained above for βi, the expectation of σ−2

d,i with respect to the Gamma

distribution Q(σ−2
d,i ) is

ασd,i

βσd,i
. Plugging this expectation into (6.21), we im-

mediately recognize that the maximizing Q-distribution is again a Gamma
distribution:

Q(βi) = Γ(gq
i , h

q
i ) (6.22)

with

gq
i = gi + Dαi

hq
i = hi +

∑

d

ασd,i

βσd,i

.
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Maximizing with respect to Q(P )

Maximizing (6.6) with respect to Q(P ) leads to the following expression:

Q(P ) =

∫

P

Q(P )

[∑

k

log(Pk)

(
(δp − 1) + nk +

∑
m

Q(km = k)

)
(6.23)

− log(Q(P ))dP .

This is the logarithm of a Dirichlet distribution. That is, the optimal Q-
function is Dirichlet:

Q(P ) = D(αP
1 , ..., αP

K) (6.24)

with

αP
k = δp + nk +

∑
m

Q(km = k).

Maximizing with respect to Q(W )

Maximizing (6.6) with respect to Q(W ) must be done for each class condi-
tional allocation parameter W k separately

Q(W k) =

∫

W k

Q(W k)

[∑

d

log(Wk,d)(δW − 1) (6.25)

+
∑

n

∑

dn

log(Wk,dn)δ(tn = k)Q(dn = d)

+
∑
m

∑

dm

log(Wk,dm)Q(km = k)Q(dm = d)

− log(Q(W k))

]
dW k.

Hence, the optimal Q-function, Q(W k), is again a Dirichlet distribution:

Q(W k) = D(αW
k,1, ..., α

W
k,D) (6.26)

with

αW
k,d = δW +

∑
n

δ(tn = k)Q(dn = d) +
∑
m

Q(km = k)Q(dm = d),

where δ(tn = k) denotes the Kronecker delta.
With (6.25) we have completed all Q-functions. As already mentioned

in section 6.3, we find the optimal Q-distributions by iteratively maximizing
each of the Q-functions in turn.
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6.6 The approximate log evidence

In order to be able to implement an EM-like algorithm, as we suggested in
section 6.3, we will successively apply the updates for the Q-functions derived
in the last section. Apart from these updates we also need some measure to
check whether the algorithm has converged to some local maximum. The
best measure to check for convergence is to evaluate (6.6) and monitor the
difference after having cycled once through all Q-function updates.

Having reached a local optimum, the value of (6.6) can serve a second pur-
pose as well: as mentioned in section 6.3 it is a lower bound of the logarithm
of the true model evidence corresponding to the particular mode found dur-
ing optimization. Although we have no guarantee that the bound is equally
tight for different models or modes, we may nevertheless use the approxima-
tion of the log-evidence for model selection. This approach was successfully
applied in [Att99] to determine the optimal number of kernels for a Gaussian
mixture density estimation.

So far, the expression in (6.6) can not be evaluated directly. In order to
evaluate (6.6) quantitatively, we must solve all integrals over Q-functions.
In principle, these integrals have already been solved during the variational
optimizations with respect to different Q-functions in the last section. Hence
we are just left with the problem of collecting these results. However an
evaluation of (6.6) must not drop any of the constants that were irrelevant
during the variational optimization.
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In order to make it easier for the reader to follow the calculations involved,
we split the expression of the approximated log-evidence. First we consider
the expectations of the contributions from different model parameters which
are of the form < log(p(ϕ))− log(Q(ϕ)) >Q(ϕ):

< log(p(P ))− log(Q(P )) >Q(P ) = log(Γ(KδP ))− log(Γ(
∑

k

αP
k )) (6.27)

+
∑

k

(
− log(Γ(δp)) + log(Γ(αP

k ))

+ (δP − αP
k )

(
Ψ(αP

k )−Ψ(
∑

l

αP
l )

))

∑

k

< log(p(W k))− log(Q(W k)) >Q(W k) =
∑

k

[
log(Γ(DδW ))− log(Γ(

∑

d

αW
k,d))

+
∑

d

(
log(Γ(αW

k,d))− log(Γ(δW ))

+

(
Ψ(αW

k,d)−Ψ(
∑

l

αW
k,l)

)
(
δW − αW

k,d

))]

∑

d

< log(p(µ
d
))− log(Q(µ

d
)) >Q(µ

d
) =

∑

d

−0.5
[
−I +

∑

i

(
log(κi,i)− log(σ2

µd,i
)

+
[
(ξi − µ̂d,i)2 + σ2

µd,i

]
κ−1

i,i

)]

∑

d

< log(p(Σ−1
d ))− log(Q(Σ−1

d )) >Q(Σ−1
d ) =

∑

d

∑

i

[
αi (log(hq

i )−Ψ(gq
i ))− log(Γ(αi))

+ αi

(
log(βσd,i

)−Ψ(ασd,i
)
)− gq

i ασd,i

hq
i βσd,i

− ασd,i

(
2 log(βσd,i

)−Ψ(ασd,i
)− 1

)

+ log(Γ(ασd,i
))

]

< log(p(β))− log(Q(β)) >Q(β) =
∑

i

[
gi log(hi)− log(Γ(gi))

+ gi (log(hq
i )−Ψ(gq

i ))− hi
gq

i

hq
i

− gq
i (2 log(hq

i )−Ψ(gq
i )− 1) + log(Γ(gq

i ))
]
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Furthermore, we get contributions from both labeled and unlabeled data.
These contributions are integrated log-likelihoods of the form
< log(p(D|ϕ)) >Q(ϕ):

< log(p(T |P , W, µ, Σ)) >Q(P ),Q(W ),Q(µ),Q(Σ),Q(dn)= (6.28)

∑
n

[
(Ψ(αP

tn
)−Ψ(

∑

k

αP
k )) +

∑

dn

Q(dn)
[
Ψ(αW

dn
)−Ψ(

D∑

d=1

αW
d )

−I

2
log(2π)− 0.5

∑

i

(
log(βdn,i)−Ψ(αdn,i) +

(
(xn,i − µ̂dn,i)2

+σ2
µdn,i

)
αdn,i

βdn,i

)
− log(Q(dn))

]]

< log(p(X|P ,W, µ,Σ)) >Q(P ),Q(W ),Q(µ),Q(Σ),Q(km),Q(dm)=

∑
m

∑

km

Q(km)
[
(Ψ(αP

km
)−Ψ(

∑

k

αP
k )) +

∑

dm

Q(dm)
[
Ψ(αW

dm
)−Ψ(

D∑

d=1

αW
d )

−I

2
log(2π)− 0.5

∑

i

(
log(βdm,i)−Ψ(αdm,i) +

(
(xm,i − µ̂dm,i)2

+σ2
µdm,i

)
αdm,i

βdm,i

)
− log(Q(dm))

]
− log(Q(km))

]

The approximated log evidence obtained by integrating (6.6) with respect
to all Q-functions is just the sum of all expressions listed in (6.27) and (6.28):

F(Q) = < log(p(P ))− log(Q(P )) >Q(P ) (6.29)

+
∑

k < log(p(W k))− log(Q(W k)) >Q(W k)

+
∑

d < log(p(µ
d
))− log(Q(µ

d
)) >Q(µ

d
)

+
∑

d < log(p(Σd))− log(Q(Σd)) >Q(Σd)

+ < log(p(β))− log(Q(β)) >Q(β)

+ < log(p(T |P ,W, µ, Σ)) >Q(P ),Q(W ),Q(µ),Q(Σ),Q(dn)

+ < log(p(X|P ,W, µ, Σ)) >Q(P ),Q(W ),Q(µ),Q(Σ),Q(km),Q(dm)

6.7 An algorithm for variational Bayes’

This section is meant to provide an implementation of a complete Bayesian
learning scheme using the updates for all Q-functions derived in section 6.5
and the approximation to the log-evidence obtained in (6.29). ’Complete’
refers to the idea that we are interested in an approximation of the posterior
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probability over model coefficients and model classes. The latter considers the
problem that the correct model class is unknown. However the expectations
of the reader should be moderate: We will only consider models with different
numbers of kernels, D. Model selection requires that the algorithm will
contain two nested loops:

• The inner loop cycles through the updates of all Q-functions. The
termination criterion is a test whether the variational functional (6.29)
has converged.

• The outer loop starts off with one kernel for each class. During inference
we increase the number of kernels as long as the final value of (6.29)
obtained in the mode increases. Thus the outer loop compares the
value of the approximate log-evidence in the local maximum reached
in the inner loop with the corresponding value obtained with one fewer
kernel. As long as the more complex model has a higher log-evidence,
we increase the number of kernels by one. If the model is too complex,
we will observe a decrease of the log evidence. Without any additional
a-priori preference for a particular model, the most probable model is
the one that reached the largest log evidence.

Pseudo-code of this algorithm together with references to the equations that
contain the numerical details is shown in program 6.1.

We should remember that algorithm 6.1 minimizes the KL-divergence
between the true posterior and the Q-distributions in a deterministic way.
That is, each update will increase the value of functional (6.6) and we con-
verge to a local optimum. Hence it is advisable to perform several runs of
the algorithm and select the result that reached the largest value of (6.29).

A similar, although simpler, algorithm is also necessary for predictions.
During predictions, the Q-distributions over parameters are fixed and infer-
ence is restricted to estimating the Q-distributions over latent kernel indica-
tors, Q(dm), and unknown class labels, Q(km). The resulting algorithm is
shown in program 6.2. Note that during predictions we reach convergence
rather quickly. In the experiments reported below, between 2 and 5 cycles
were sufficient.

6.8 Experiments

The classifier used in this chapter is known to be difficult to infer if the
number of training samples is small compared to the number of input vari-
ables. Since the Bayesian learning scheme used for inference is based on a
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Program 6.1 Variational Bayes’ for a generative classifier

initialize(Q(µ), Q(Σ), Q(β), Q(P ),Q(W ), Q(km))
D = K % set nr. kernels equal to nr. classes
Fmax = −∞
REPEAT

∀Q: Qresult = Q
REPEAT
∀dn: update(Q(dn)) % according to (6.11)
∀km: update(Q(dm)) % according to (6.13)
∀km: update(Q(km)) % according to (6.15)
update(Q(µ)) % according to (6.17)
update(Q(Σ)) % according to (6.20)
update(Q(β)) % according to (6.22)
update(Q(P )) % according to (6.24)
update(Q(W )) % according to (6.26)
update(F(Q)) % according to (6.29)

UNTIL (convergence(F(Q)))
IF F(Q) > Fmax D=D+1 % then increase number of kernels
initialize(Q(µ), Q(Σ), Q(β), Q(P ), Q(W ), Q(km))

UNTIL (Fmax ≥ F(Q))

Program 6.2 Variational inference during predictions

initialize(Q(km))
REPEAT

∀km: update(Q(dm)) % according to (6.13)
∀km: update(Q(km)) % according to (6.15)

UNTIL (convergence(F(Q)))
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variational technique, which uses several approximations, it is advisable to
check the validity of the resulting approach by some empirical tests. The
experiments reported below serve four purposes:

• We will assess empirically which number of inputs we can deal with
given a particular training size.

• We show that adding unlabeled samples, obtained from the same distri-
bution as the labeled samples, can improve classification accuracy. We
will only get an improvement if there are not sufficient labeled samples
to fit a generative model.

• We will also provide empirical evidence that model selection is possible
despite the approximative nature of the log evidence derived above.

• A comparison of the variational approximation to a sampled solution
obtained via Gibbs updates6 shows that the classification accuracy does
not suffer - despite an increased computational efficiency both during
model inference and prediction.

Practical relevance of the approach is demonstrated by applying the method
to the problem of sleep analysis that was introduced in chapter 2.

6.8.1 Small data limits and model selection

One of the problems of generative classification is that, compared with pre-
dictive classifiers, the models are much more complicated to train. The larger
the input dimensionality, the higher the chance that model inference fails.
This is the curse of dimensionality, such as mentioned in [Bis95]. Hence,
when proposing a generative model, we should assess the behaviour with re-
spect to data sets with high input dimensionality. These aspects are best
shown on synthetic data with known properties. A problem that can not
be solved in a subspace spanned by the inputs is an aritificial XOR-problem
that can be generated in various dimensions. For an I-dimensional problem
we need 2I kernels, each positioned in a vertex of a hyper cube. The vertices
are obtained by generating all possible permutations of 1 and −1 within this
I dimensional space. The labels for all samples drawn from one of these ker-
nels are obtained to give an XOR relationship between the kernels and the
label. (e.g. set the label to 1 if the number of positive 1’s in the kernel vector

6It can be shown that the Gibbs sampler will - at least theoretically - find the cor-
rect posterior. As already mentioned in section 6.3, this is not true for the variational
approximation.
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is even and to 2 otherwise.) The experiments mentioned below have been
performed with Gaussian kernels using diagonal covariance with standard
deviation 1. This problem is referred to as XOR.

The disadvantage of the XOR data is that the underlying model is con-
tained in the model class represented by the generative classifier. Therefore,
we consider an alternative problem as well, where data are uniformly dis-
tributed within an I-dimensional hyper cube. Labeling is obtained by as-
signing all samples within a sphere to class 1 and all samples outside to class
2. In order to make this problem stochastic, we added a small amount of
Gaussian noise with std. deviation of 0.1 to each dimension. These data will
be referred to as circle.

In order to assess the performance with respect to different ratios of input
dimensions and number of samples, we draw 500 training samples for both
synthetic problems at different input dimensions. The smallest data set has 2
inputs. The generative model is fit into these data sets and its performance is
evaluated using a test set that contains 500 samples as well. As pointed out
in section 6.7 model fitting must be done with care. Especially for complex
problems such as XOR in high dimensions the inference algorithm must be
run more than once. The results obtained in this section were achieved by
allowing for 5 repetitions in each training run.

The behaviour of the proposed algorithm is illustrated by plots of the ap-
proximated log evidence and by a table that lists the achieved generalization
accuracies. Figures 6.2 and 6.3 show the log evidences for the XOR problem.
We see that the model is estimated correctly for the 2- and 3-dimensional
problem. However inference of the 4-dimensional problem breaks down com-
pletely. Table 6.1 shows a decay of the generalization accuracy with increas-
ing input dimension.

Table 6.1: Generalization accuracies at different input dimensions

2 dim. 3 dim. 4 dim. 5 dim.
circle data 94 % 83 % 79 % 50 %
XOR data 87 % 78 % 50 %

The approximated log evidence using different numbers of kernels for the
circle problem is shown in figures 6.4 and 6.5. What we clearly see is that
the algorithm does not find a proper solution for the 5-dimensional problem.
The generalization accuracies reported in table 6.1 confirm this impression.
We see that the performance gets worse with increased number of inputs and
breaks down for the 5 dimensional problem.
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Figure 6.2: Approximated log evidence for the XOR problem in 2 and 3 di-
mensions. Predictions have been carried out with the model that got highest
log evidence.
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Figure 6.3: Approximated log evidence for the XOR problem in 4 dimensions.
Inference of this model fails already. Hence we did not worry about testing
the 5 dimensional problem. At least the inference is honest in the sense that
the smallest model we tried got the highest log evidence.

In the case of the circle data, the 5-dimensional problem could be solved
by adding the 500 test samples as unlabeled data to the training samples.
The generalization accuracy increases to 70%. In order to assess significance,
we count the samples that were classified differently by the two classifiers.
In particular we are interested in the errors made by each of the classifiers
that were not made by the other (na and nb). The classifier that was trained
using labeled and unlabeled got na = 129, the original classifier nb = 229.
Referring this to a Binomial Bn(na + nb, 0.5) distribution reveals that this
difference is highly significant. Figure 6.6 shows the log evidences obtained
in the corresponding training run.

The conclusion from these experiments is that we can not easily determine
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Figure 6.4: Approximated log evidence for the uniform circular problem in
2 and 3 dimensions. Predictions have been carried out with the model that
got largest log evidence.
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Figure 6.5: Approximated log evidence for the uniform circular problem in
4 and 5 dimensions. In the last plot we can see that the method suggests a
model with 2 kernels, which was the simplest model we tried.

how many samples we need for a particular number of inputs. The number of
inputs we need will also depend on the complexity of the problem. However
the good news is that the method will propose the smallest model complexity
that was tried when the number of inputs does not suffice to determine a
solution.

These results have also shown that although (6.29) is only a lower bound
of the log evidence, the results we obtain from model selection are promising.
We may conclude that the optimal number of kernels suggested by the algo-
rithm illustrated in program 6.1 is a reasonable choice of model complexity.
This is important in situations where we want to use the generative nature
of the model to obtain further insight into how a particular classification was
reached. That is, these results allow us to be confident that the information
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Figure 6.6: Approximated log evidence for the uniform circular problem in 5
dimensions when using labeled and unlabeled data for inference. Predictions
have been carried out with the model that got largest log evidence.

about the most probable kernel a sample was generated from is useful if such
analysis is of interest.

6.8.2 Comparison with a Gibbs sampler

Comparing the variational solution with inference via Gibbs updates, we are
mainly interested in issues of computational efficiency and generalization ac-
curacy. We use two data sets to assess that. One test is performed with the
3 dimensional XOR problem. We use again 500 samples as training data and
1000 samples as test data. The other data we use in thic comparison is from
the sleep analysis task discribed in chapter 2. The training data contain 5929
samples extracted from 6 different recordings. The generalization accuracy
was estimated with 17070 samples from 3 independent recordings. The clas-
sification inputs are the first 3 reflection coefficients extracted from electrode
C3. Preprocessing was performed with the methods described in chapter 4.
According to the motivations in chapter 2, we predict probabilities for wake,
rapid eye movement (REM) sleep and deep sleep. In both experiments we
fix the number of kernels; For the XOR problem we know the true number,
which is 8; for the EEG data we set the number of kernels to 9. As is shown
in the next subsection, this is at the lower end of probable models.

Both algorithms are assessed in terms of time needed until convergence.
For the Gibbs sampler convergence is hard to define. In principle, this is
done by checking the sampled Markov chains. As this is quite an involved
procedure, we decided to draw 1000 samples from the posterior and use the
second half for prediction. Apart from the time needed for inference we
are also interested in the time the method needs during predictions and, of
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course, in generalization accuracy.
Inference (that is training) of the XOR model took about 3700 seconds

with the Gibbs sampler and about 531 seconds with variational inference.
Inference of the classifier for classification of sleep data took 1.8636 · 104

seconds, which is slightly more than 5 hours. With the same data variational
inference took about 2994 seconds. Hence in both experiments variational
inference was about 5 to 6 times faster than Gibbs sampling.

Table 6.2: Comparison variational inference versus Gibbs sampling

XOR Sleep 1 Sleep 2 Sleep 3
nr. test cases 1000 1140 7530 8400

predictions from variational inference
time (s) 3.86 12.3 12.96 12.27

gen. acc. (%) 78.5 97.8 46.7 74.4
na 7 19 319 348

predictions from Gibbs sampling
time (s) 4.45 58.37 58.07 55.61

gen. acc. (%) 77.9 98.2 39.8 66.4
nb 13 11 737 1200

The resulting predictions together with the time we need for predicting
are reported in table 6.2. As already mentioned, the XOR test data consists
of 1000 samples. The results obtained on the 3 sleep recordings have been
evaluated using such epochs only that were equally classified as wake, REM
or deep sleep by 2 independent and one consensus human experts. Hence the
number of samples in the corresponding test sets differs. We conclude from
these experiments that we obtain the variational results faster without losing
performance. In fact, for 2 of the sleep experiments we even get a significantly
better result when predicting with the variational classifier. Note, however,
that this rather points to the fact that we should have drawn more samples
during inference than to a shortcoming of the Gibbs sampler.

We want to finish this comparison of variational inference and Gibbs
sampling with two figures that show the probability traces obtained for 2
sleep recordings. We see three traces that predict probabilities for wake,
REM sleep and deep sleep. The probabilities have been “smoothed” by
assuming conditional independence of the observations contained within a
window of 20 seconds. That is, we perform some kind of näıve Bayes sensor
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Figure 6.7: Probability traces obtained for an all night recording. The entire
night is interpreted via probabilities for wake, REM and deep sleep. The left
plots show the probabilities predicted by a classifier obtained via variational
inference. The right plots show the probabilities predicted with a classifier
parameterized via Gibbs sampling. The left plots have a larger range which
is due to an underestimation of the parameter variance caused by the mean
field approximation. We see that the entire night is segmented in epochs of
deep sleep and REM sleep that is occasionally interrupted by wake.

Figure 6.7 shows a recording where we clearly identify some “structure”
of sleep. The entire night is segmented in epochs of high probability for deep
sleep which alternate with epochs of high REM probability. This cycle is
occasionally interrupted by segments with high probability for wake.

A possible explanation why we can not see such structure in figure 6.8, is
the poor quality of the second recording. The probabilities are closer to equal
probability, which indicates some uncertainty in classifying this recording.

7The code used for this sensor fusion has been provided by I. Rezek, S. Roberts and
W. Penny from the Robotics research group at the University of Oxford, UK.
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Figure 6.8: Probability traces obtained for an all night reording. The entire
night is interpreted via probabilities for wake, REM and deep sleep. The left
plots show the probabilities predicted by the variational Bayesian classifier.
The probabilities in the right plots are predictions from a classifier sampled
via Gibbs updates. The left plots have larger range which is due to an under
estimation of the parameter variance caused by the mean field approximation.
A nice segmentation of the night is not possible, which is most probably
caused by the poor quality of the recording.
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The left traces in figures 6.7 and 6.8 have been obtained with the varia-
tional classifier. The right plots are obtained by predicting with the classifier
inferred with Gibbs sampling.

It is remarkable that the range of the traces obtained by variational in-
ference is larger. The reason for the different ranges are larger modera-
tion effects8 due to higher variance of the parameter distributions as esti-
mated by the Gibbs sampler. This is confirmed through observations by T.
Jaakkola9. The variance of the Q-distributions obtained by variational infer-
ence is smaller because of simplifications introduced by using a mean field
approximation. Assuming a factorizing distribution of the parameters ne-
glects dependencies among them. Hence the variances of the true parameter
distributions are underestimated.

6.8.3 A thorough analysis of all night sleep EEG

The experiments presented here are, so-to-speak, the driving force behind
all the efforts reported in this chapter. We performed an experiment, where
we once more use sleep recordings. As motivated in chapter 2, we interpret
the entire night in terms of probabilities for Rechtschaffen and Kales (R &
K) labels wake, REM sleep and deep sleep (stage 4). The labels taken for
the supervised part were taken from segments that have been unanimously
been classified as either wake, REM or stage 4 by 3 human experts. All other
epochs were added to the training data without labels. That is we have a
partially supervised problem. We used raw EEG from electrodes C3, O1, C4
and O2. The raw EEG was preprocessed using the lattice filter described
in chapter 4. We extracted 3 coefficients for each second of each all night
recording. Training was done using data from 6 recordings, where we fitted
one model for each electrode separately. The idea behind this redundancy is
that a failing electrode will not invalidate the entire analysis. Sensor fusion
will fuse the probabilities obtained for each electrode. The expert labels
have been provided for each 30 seconds epoch of the entire night. Hence we
would get 30 successive samples labeled equally. The resulting number of
training samples is much larger than required and we should down-sample
such that only one sample remains for each 30 seconds epoch10. Instead of
random sub-sampling, we extracted the median sample, measured in terms
of Euclidean distance from the origin. This procedure gave a training set

8Probabilities obtained by marginalizing out parameter uncertainties will always be less
certain about the state of interest. This effect is referred to as moderation (e.g. [Bis95]).

9Personal communication at the NIPS conference, Denver Colorado, in December 1999.
10Using all data is no problem except for an unnecessary computational burden we want

to avoid.
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with 1835 labeled and 3962 unlabeled samples.
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Figure 6.9: These plots show the approximated log evidence and model prob-
abilities for different numbers of kernels, resulting from inference at electrode
C3. We see that the model with 15 kernels dominates by far, it has almost
the entire probability mass.
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Figure 6.10: These plots show the approximated log evidence and model
probabilities for different numbers of kernels, resulting from inference at elec-
trode O1. The model with 14 kernels has a probability of about 0.85. The
remaining mass is on the 15 kernel model.

In this experiment a lot of care has been taken to perform training op-
timal. That is we perform model selection based on the approximated log
evidence, (6.29). Due to prior expirience with the data, we expected the
optimal number of kernels to be between 4 and 22. Inference was repeated
5 times for each kernel number. For each kernel we selected the result with
highest log evidence. The resulting plots of the log evidence and model prob-
abilities for electrode C3 are shown in figure 6.9, for electrode O1 in figure
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6.10, for electrode C4 in figure 6.11 and for electrode O2 in figure 6.12. We
get rather different answers about the optimal kernel numbers for the dif-
ferent electrodes. The best interpretation of that is that it hardly matters
which model to chose in the range of 10 to 19 kernels. The differences in log
evidences are most probably due to different modes found during inference.
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Figure 6.11: These plots show the approximated log evidence and model
probabilities for different numbers of kernels, resulting from inference at elec-
trode C4. Several models share the probability mass in this experiment: the
model with 11 kernels has a probability of 0.45, the model with 15 kernels
has probability 0.15 and the rest is allocated to the model with 19 kernels.

Predictions were done applying the most probable model to each electrode
and using a näıve Bayes conditional independence assumption for sensor
fusion. The test data are 6 all-night recordings. The plots in figures 6.17,
6.18, 6.19, 6.20, 6.21 and 6.22 were obtained by sensor fusion of all 4 channels
and in order to smooth with a window of 20 seconds length. In order to
allow a comparison with the classical Rechtschaffen and Kales scorings, the
consensus scoring is depicted as well. Since visual inspectio alone is not
sufficient, we also aimed at a numerical quantification.

In order to allow such numerical quantification of the plots, we compared
the generalization accuracies obtained from predicting labels wake, REM
and delta sleep (the combined R & K stages 3 and 4) when comparing with
the corresponding R & K labels of the consensus scorings. The difficulty
with this attempt is that we have to determine 3 thresholds for each prob-
ability trace, in order to predict the corresponding labels. To avoid a too
strong dependence on the estimates of the class priors for these 3 events, we
use a variable cost approach and plug in priors known from literature (e.g.
[Kub95]), instead of empirical estimates from the recordings.

Despite the fact that we deal with a 3 class problem, we can use a sen-
sitivity - specificity analysis as known from receiver operating characteristic
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Figure 6.12: These plots show the approximated log evidence and model
probabilities for different numbers of kernels, resulting from inference at elec-
trode O2. We see that the model with 15 kernels has a probability of 0.9 and
the model with 17 kernels has a probability of 0.1.

(ROC) plots (see e.g. [ZC93]), originally defined only for 2-class problems.
We may do so because at the threshold values of interest (rather high thresh-
olds) the problem separates nicely into 3 independent dichotomous classifica-
tion problems. That is, at those thresholds there will not be any interference
among the 3 different classes.

The ROC-like plots obtained for this problem are shown in figure 6.13.
It is worth mentioning the difference to conventional ROC plots. We see
that neither of the 3 classes reaches specificity 0. This is because at low
threshold values we will predict the “winner”, which is the class with highest
probability.
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Figure 6.13: Three ROC plots obtained for R & K classes wake (left), REM
(center) and delta sleep (right). The analysis was performed using the 6
recordings that have been used for training and labels from consensus hypno-
grams. As opposed to classical ROC curves these plots do not reach speci-
ficity 0, as for small thresholds we predict the class with largest probability.
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The optimal thresholds for classifying wake, REM or delta sleep depend
on the prior probabilities of those classes. According to [Kub95], these are
different depending on the length of a subjects sleep. The prior probability
for wake is between 0.036 and 0.086. For REM we observe prior probabilities
between 0.198 and 0.236. Finally, delta sleep (combined stages 3 and 4) has a
prior probability between 0.136 and 0.238. Assuming equal cost for misclas-
sifications, the threshold value must minimize the expected generalization
error. Figure 6.14 shows the expected generalization error over threshold
values for class wake. In figures 6.15 and 6.16 we see these expected gener-
alization errors for class REM and delta. The minimizing threshold depends
on the assumed class priors. They are summarized in table 6.3.

Table 6.3: Optimal threshold values from a sensitivity - specificity analysis

P(class) Pthr P(class) Pthr Pthr chosen
wake 0.036 0.86 0.086 0.8 0.83
REM 0.198 0.8 0.238 0.75 0.775
delta 0.138 0.65 0.238 0.6 0.625

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Expected generalization error for P(wake)=3.6%

Threshold value

E
xp

ec
te

d 
ge

ne
ra

liz
at

io
n 

er
ro

r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09
Expected generalization error for P(wake)=8.6%

Threshold value

E
xp

ec
te

d 
ge

ne
ra

liz
at

io
n 

er
ro

r

Figure 6.14: The plots show the expected generalization error when classify-
ing class wake over different threshold values. The left plot is obtained assum-
ing P (wake) = 0.036. The results of the right plot assume P (wake) = 0.086.



CHAPTER 6. A BAYES’ INFERRED GENERATIVE CLASSIFIER 97

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Expected generalization error for P(REM)=19.8%

Threshold value

E
xp

ec
te

d 
ge

ne
ra

liz
at

io
n 

er
ro

r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Expected generalization error for P(REM)=23.6%

Threshold value
E

xp
ec

te
d 

ge
ne

ra
liz

at
io

n 
er

ro
r

Figure 6.15: The plots show the expected generalization error when clas-
sifying class REM over different threshold values. The left plot is ob-
tained assuming P (REM) = 0.198. The results of the right plot assume
P (REM) = 0.236.
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Figure 6.16: The plots show the expected generalization error when classi-
fying combined R & K stages 3 and 4 over different threshold values. The
left plot is obtained assuming P (delta) = 0.136. The results of the right plot
assume P (delta) = 0.238.
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Having determined the thresholds summarized in table 6.3, we are now
ready to predict the R & K stages wake, REM and delta (combined stages 3
and 4) from the continuous hypnograms. The results summarized in table 6.4
were obtained for the 6 independent test recordings already mentioned above.
Note that table 6.4 also contains the agreement of the 2 independent scorings
with the consensus score. We see that these results agree with the impression
we get from visually inspecting the corresponding continuous hypnograms in
figures 6.17, 6.18, 6.19, 6.20, 6.21 and 6.22. That is, for some recordings it is
possible to predict the R & K stages reliably. For others this is impossible.

It is worth mentioning to that also a separation of REM non-REM is
possible on some recordings by using only information from EEG. This is
contrary to the results e.g. reported in [FSRD00], where on the same data
such a separation was not possible - even when adding EMG11. The major
difference between [FSRD00] and our experiment is that [FSRD00] has used
a hidden Markov model, which is an unsupervised technique and hence not
an optimal choice for a supervised problem (e.g. [Rip96]).

Table 6.4: Comparison with expert scorings

subj. 1 subj. 2 subj. 3 subj. 4 subj. 5 subj. 6
spc. wake (%) 81.62 59.8 58.68 49.02 52.32 20.5
spc. REM (%) 94.93 79.37 96 47.24 77.72 19.7

spc. S3 & S4 (%) 79.6 93.73 49.81 38.6 51.11 67.21
sns. wake (%) 94.4 97.03 97.86 99.91 99.96 92.02
sns. REM (%) 99.19 89.17 88.15 69 79.8 78.7

sns. S3 & S4 (%) 98.07 89.42 90.55 100 100 92.66
acc. var. inf. (%) 86.58 69.96 71.75 46.99 62.32 50.44
acc. rater 1 (%) 44.82 93.16 95.38 92.48 92.46 92.2
acc rater 2 (%) 91.82 94.1 92 92.92 90.99 96.26

6.9 Summary

The method proposed in this chapter has been extensively studied using
several synthetic and one real world problems. The major findings of these
experiments are:

11This is due to the poor quality of the EMG signal
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• Despite that variational inference maximizes a lower bound of the log
evidence, model selection is possible. Hence the number of kernels used
in the classifier is a well determined quantity that allows to use the
posterior probabilities of each kernel to obtain deeper insight into the
problem. We may for example identify a more fine grained structure of
the problem as is provided by the number of predicted classes.

• We can diagnose a break down of inference when the number of training
samples is insufficient by monitoring the approximated log evidence. In
such cases where we have not enough labeled examples adding unla-
beled data will improve inference. In these cases we observe a signifi-
cantly higher generalization accuracy.

• The approximation obtained by variational inference allows signifi-
cantly faster inference than sampling techniques. Due to the mean
field expansion of the estimated posterior, we get a result that under-
estimates the variance of the parameter distributions. This manifests
in over confident probability estimates. However despite that we did
not observe significantly worse generalization accuracies.

• Comparing the generalization accuracies obtained on sleep recordings
with human labels of stages wake, REM and delta sleep (combined
stages 3 and 4) we find less problems with predicting REM as was
previously reported in [FSRD00].

We may therefore suggest that the inference technique proposed in this
chapter is a viable way to perform predictions in the biomedical domain. At
present the method undergoes an extensive evaluation within the EC biomed
project SIESTA12. This evaluation uses about 600 all night recordings and
investigates whether these recordings can be quantified in terms of a measure
ranging from good sleep to bad sleep and sleep disorders. The first step in
this analysis has been done in subsection 6.8.3: We could show that for some
recordings a REM - non-REM separation was possible solely based on EEG
information. This observation is of particular interest because it could help
to overcome the problems with EMG data as are in [FSRD00].

There is also some room left for improving the inference algorithm. Since
program 6.1 will only find a local optimum of (6.29), it might be advisable
to perform the search for optimal models on a kernel basis similar to the
approach taken in [GB00].

12Project details may be found in the acknowledgments chapter.
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Figure 6.17: Probability traces obtained for an all-night recording. The
entire night is interpreted via probabilities for wake, REM and deep sleep.
The probabilities have been obtained by sensor fusion of channels C3, O1,
C4 and O2. An R & K scoring is added to allow for a comparison with the
classical scoring technique. It shows that at the information contained in the
delta cycle and in the probabilities for wake conform with the R & K scoring.
The REM cycle looks plausible in the first half of the night. However, during
the second half there is some overlap with the R & K stage 2.
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Figure 6.18: Probability traces obtained for an all-night recording. The
entire night is interpreted via probabilities for wake, REM and deep sleep.
The probabilities have been obtained by sensor fusion of channels C3, O1,
C4 and O2. An R & K scoring is added to allow for a comparison with the
classical scoring technique. We see that the delta cycle and the probabilities
for wake show similar information as the R & K scoring. Again there are
some problems with the REM cycle.
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Figure 6.19: Probability traces obtained for an all-night recording. The entire
night is interpreted via probabilities for wake, REM and deep sleep. The
probabilities have been obtained by sensor fusion of channels C3, O1, C4 and
O2. An R & K scoring is added to allow for a comparison with the classical
scoring technique. In this plot we see an almost perfect correspondence of
the plots with R& K labels. Also in the sense that there will not bee too
many false positives when thresholding the REM probability.
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Figure 6.20: Probability traces obtained for an all-night recording. The
entire night is interpreted via probabilities for wake, REM and deep sleep.
The probabilities have been obtained by sensor fusion of channels C3, O1,
C4 and O2. An R & K scoring is added to allow for a comparison with the
classical scoring technique. The probability traces shown in this figure allow
also to extract R & K stages. However, there will also be some false positives
for REM, especially in the first half of the night.
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Figure 6.21: Probability traces obtained for an all-night recording. The entire
night is interpreted via probabilities for wake, REM and deep sleep. The
probabilities have been obtained by sensor fusion of channels C3, O1, C4 and
O2. An R & K scoring is added to allow for a comparison with the classical
scoring technique. These plots allow again a rather good determination of
the extreme sleep events wake REM and deep sleep without too many false
positives.
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Figure 6.22: Probability traces obtained for an all-night recording. The
entire night is interpreted via probabilities for wake, REM and deep sleep.
The probabilities have been obtained by sensor fusion of channels C3, O1,
C4 and O2. An R & K scoring is added to allow for a comparison with the
classical scoring technique. In this figure the plots obtained by the variational
classifier have almost no correspondence with the R & K stages. The reason
is probably the extreme low quality of the recording.



Chapter 7

Bayesian sensor fusion

Sensor fusion denotes an approach that combines information obtained from
different sources. In time series classification of EEG signals we obtain in-
formation extracted from different electrodes and at different time instances.
This information should be combined in a way that the resulting classifica-
tions are optimal. An intuitive idea is to downweight such information that
was assessed to be unreliable. The method proposed in this chapter will as-
sess the reliability of sensors by using the Bayesian preprocessing technique
described in chapter 4. We will show that in order to perform optimal sensor
fusion, it is sufficient to use a probabilistic link between preprocessing results
obtained from different sensors and the classification stage.

The approach developed in this chapter is also interesting from another
point of view. The proposed model and the inference scheme result when
we follow the requirements that are necessary to comply with the Bayesian
framework. These requirments were formulated in chapter 4 to motivate that
preprocessing must be done within the Bayesian framework. We concluded
that predictions must be obtained from marginal distributions after integrat-
ing out all uncertainties. Hence the key idea of what we call Bayesian sensor
fusion is to treat the results obtained from preprocessing as latent variables
and consider two types of uncertainties. We assess the reliability of each lat-
tice filter stage by its probability as opposed to a white noise explanation of
the corresponding data. The uncertainties about the lattice filter coefficients
are modeled by a posterior distribution. Both the probabilities of the lattice
filter stages and the posterior distributions were obtained in chapter 4.

In this chapter we propose a generative model and a Bayesian learning
scheme that builds on the findings from chapter 4. The proposed algorithms
for learning and prediction fuse information from different sensors spatially
and across time. Thus our models as well as predictions will depend more
on accurate information. Furthermore the proposed approach will also esti-
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mate the expected values of the latent feature variables. Our experiments
show that in such situations where either the feature variables or the prepro-
cessing method are associated with high uncertainty these expected feature
values differ a lot from the best estimates obtained from preprocessing alone.
The proposed algorithm deals with all kind of missing values. We may use
unlabeled data for learning as well as missing inputs during learning and
predictions. In order to get a computationally tractable method, both fea-
ture and model uncertainty of the preprocessing stage are obtained in closed
form. In the classification part both parameter inference and predictions are
performed with Markov chain Monte Carlo (MCMC) methods.

We conclude this chapter with an evaluation of the method that uses two
problems. A synthetic experiment is used to provide some insight into the
method. Finally we apply the method to a classification of all night sleep
EEG recordings.

7.1 Introduction

We have argued in chapter 4 that once we opt for an analysis within a
Bayesian framework, we must do this throughout the entire decision process.
The approach studied in this section assumes that we are given some seg-
ments of time series, each labeled as being in one of K possible states. Such a
setting is typically found in biomedical diagnosis, where successive segments
of bio-signals are to be classified. Usually, the number of samples within the
segments is large. However, the information contained in a segment is often
represented by a much smaller number of features. Such problems are typi-
cally solved by splitting the whole problem into two parts: a preprocessing
method that extracts some features and a classifier.

So far we have used Bayesian inference for both of the tasks separately.
By using the best estimates from preprocessing as inputs for the classifica-

tion task, we have so far used a non probabilistic link between preprocessing
and classification. Such a link does not allow feature or model uncertainty,
as is found by Bayesian preprocessing, to have an influence on the beliefs
reported by the classifier. In a Bayesian sense this is equivalent to approxi-
mating the posterior probability density over feature variables by a delta peak
and ignoring the uncertainty in the stochastic model used for preprocessing.

As was proposed in chapter 4, a model that allows for a probabilistic link
between preprocessing and classification must have a structure similar to the
directed acyclic graph (DAG) shown in figure 7.1. The key idea is to treat
the features obtained by preprocessing as latent variables. The link between
ρ and X represents preprocessing, which must be carried out in a Bayesian
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ϕ

X

t

Figure 7.1: A directed acyclic graph for the hierarchical model. We use t to
denote the unknown state variable of interest. The node ρ is a latent (un-
observed) variable representing features from preprocessing and X denotes a
segment of a time series. Circles indicate latent variables, whereas the square
indicates that X is an observed quantity.

setting. The model used in this section for preprocessing is the lattice filter
representation of an auto regressive (AR) model that was derived in chapter
4.

So far approaches that used a probabilistic structure similar to the DAG
in figure 7.1 have focused on marginalizing out input uncertainties. The main
emphasis in [Wri98] and [DS95], for instance, is to derive a predictive distri-
bution for regression models where input uncertainty is taken into account.
In a Bayesian sense, this approach is the only way of consistent reasoning if
perfect knowledge of inputs is not available. We provide a similar analysis
for classification problems. However our approach goes further than that.

• We allow for different uncertainties at different inputs. This leads to
predictions that are dominated by inputs that are more certain. Using
generative models to link t and ρ, the model provides information about
the true input values of less certain sensors. Using several sensors will
lead to some kind of “Bayesian sensor fusion”. As has been shown in
chapter 6, the use of a generative model gives us the additional benefit
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that we can use unlabeled data for parameter inference as well.

• Another extension of the work reported in [Wri98] and [DS95] is that
we take the model uncertainty, inherent in all preprocessing methods,
into account. Model uncertainty is represented by the posterior proba-
bility of the model conditional on the corresponding data segment, X .
Consideration of model uncertainties also allows a treatment of missing
inputs1.

We will show in the following sections that marginalizing out latent vari-
ables in a static DAG indeed performs sensor fusion such that predictions
depend more on certain information. Equipped with this theoretical insight,
we propose a DAG and inference scheme that is well suited for time series
classification. We assume a first order Markov dependency among class labels
of interest and derive MCMC updates that sample from the joint probability
distribution over latent variables and model coefficients. In the experimental
section we apply these techniques to a synthetic problem and to the problem
described in chapter 2. We show that probability estimates for sleep stages
obtained from EEG signals with the proposed method are less affected by
artifacts contaminating sleep EEG.

7.2 Spatial fusion

In our case the input uncertainty is a result of the limited accuracy of fea-
ture estimates as obtained by preprocessing. If we know that the model
used in preprocessing is the true model that generated the time series X ,
the approach taken by [Wri98] and [DS95] would be sufficient. However, as
was argued in chapter 4, we do not know whether the model used during
preprocessing is the true one and we must consider feature as well as model
uncertainty. Thus inference must be carried out with a DAG that allows for
both feature and model uncertainty. Sensor fusion will only take place if dif-
ferent sensors are conditionally dependent on the state of interest. In order
to take this into account, we have to extend the DAG structure2 as shown in
figure 7.2. We introduce binary indicator variables, Ia and Ib, that control

1It suffices to set the posterior probability of all lattice filter stages for missing inputs
to zero.

2Another way of respecting both uncertainties would be to use a hierarchical sampling
scheme that generates the marginal uncertainty of feature values. This could be achieved
by first sampling Ia and Ib from their posterior probabilities. Given the indicator is
1, we would then sample from the posterior densities p(ρa|Xa) or p(ρb|Xb), respectively.
Given the indicator is 0, we would sample from the prior p(ρa) or p(ρb), respectively.
However, this approach is suboptimal, because it neglects information about the latent
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the conditional dependency of the observed data segments, Xa and Xb, on
the latent variables ρa and ρb, respectively. The DAG in figure 7.2 illustrates

ϕ ϕ
I a

t

a b

X a bX

bI

Figure 7.2: A directed acyclic graph that captures both parameter uncer-
tainty as well as model uncertainty in preprocessing. We use t to denote
the unknown state variable of interest. Both ρa and ρb denote latent vari-
ables representing the unknown values of the features that are estimated by
preprocessing. The corresponding segments of the time series are denoted
by Xa and Xb. The latent binary indicator variables Ia and Ib control the
dependency of the data segments on the latent variables.

the dependency between a state variable t, latent variables, ρa and ρb, and
the corresponding segments of a time series, Xa and Xb. The dependency is
controlled by two model indicator variables, Ia and Ib, one for each sensor.
Both models, Ia and Ib, representing particular stages of a lattice filter, are
probable explanations of the corresponding time series Xa and Xb.

During preprocessing we allow for two possible explanations of each seg-
ment of the time series. With probability P (Ia|Xa), the latent variable ρa is
conditional on both the time series3 Xa and the state variable t. However,
with probability 1−P (Ia|Xa), Xa is pure white noise and does not provide any
information about ρa. In this case, we have to condition on t only. Loosely

feature variables provided via the latent state variable t. The approach proposed here
does not have this problem.

3The DAG in figure 7.2 shows Xa conditionally dependent on ρa. But directions of
arrows can always be inverted via Bayes theorem and that is what we do when we are
interested in the value of ρa.
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speaking, we deal with a problem of “probably missing values”. This inter-
pretation of figure 7.2 tells us that we need to use the following definition of
the conditional probability density of Xa:

p(Xa|ρa, Ia) =

{
p(Xa|ρa, Ia ≡ 1)

p(Xa|Ia ≡ 0)
(7.1)

Depending on the value of Ia, we introduce a conditional independence be-
tween the data, Xa, and the true feature value, ρa. Obviously this indepen-
dence is not seen in the DAG in figure 7.2. When changing indices, we get
the same statements for the latent variable ρb.

As already mentioned, we want to predict the belief of state t conditional
on all available information. This is the observed time series Xa and Xb

as well as all training data D observed so far. Although we will not state
this explicitly, all beliefs are also conditional on training data D. This is a
requirement that humans apply intuitively. Whenever a clinical expert wants
to monitor a new recording of some biological time series he has some prior
expectations about the range they should use.

In order to provide deeper insight into the model illustrated in figure
7.2, we will infer both the posterior probability P (t|Xa,Xb) and the pos-
terior probability density p(ρa|Xa,Xb). Using Bayes theorem, we express
P (t)p(ρa|t) as p(ρa)P (t|ρa) and P (t)p(ρb|t) as p(ρb)P (t|ρb). Conditioning on
Xa and Xb, the DAG in figure 7.2 implies:

p(t, ρa, Ia, ρb, Ib|Xa,Xb) = (7.2)

P (t|ρa)P (t|ρb)p(ρa|Ia,Xa)p(Ia|Xa)p(ρb|Ib,Xb)p(Ib|Xb)p(Xa)p(Xb)

P (t)p(Xa,Xb)
.

As neither variable on the left side of the conditioning bar in (7.2) is observed,
we use marginal inference. We obtain P (t|Xa,Xb) by plugging (7.1) into (7.2)
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and integrating out ρa, Ia, ρb and Ib and get

P (t|Xa,Xb) =
1

C

1

P (t)

(
P (Ia ≡ 1|Xa)

[
P (Ib ≡ 1|Xb) (7.3)

∫ ∞

ρa=−∞
P (t|ρa)p(ρa|Xa)dρa

∫ ∞

ρb=−∞
P (t|ρb)p(ρb|Xb)dρb

+ P (Ib ≡ 0|Xb)

∫ ∞

ρa=−∞
P (t|ρa)p(ρa|Xa)dρa

∫ ∞

ρb=−∞
P (t|ρb)p(ρb)dρb

]

+ P (Ia ≡ 0|Xa)

[
P (Ib ≡ 1|Xb)

∫ ∞

ρa=−∞
P (t|ρa)p(ρa)dρa

∫ ∞

ρb=−∞
P (t|ρb)p(ρb|Xb)dρb

+ P (Ib ≡ 0|Xb)

∫ ∞

ρa=−∞
P (t|ρa)p(ρa)dρa

∫ ∞

ρb=−∞
P (t|ρb)p(ρb)dρb

])
,

where p(ρa) and p(ρb) are the unconditional priors observed on the train-
ing data and C is a normalization constant. The influence of feature un-
certainty on the probability of the state t is most easily seen if we assume
perfect knowledge of the preprocessing model. In this case equation (7.3)
gives

P (t|Xa,Xb) ∝
∫ ∞

ρa=−∞
P (t|ρa)p(ρa|Xa)dρa

∫ ∞

ρb=−∞
P (t|ρb)p(ρb|Xb)dρb.

We may interpret this expression such that the probability P (t|Xa,Xb) is
dominated by those variables whose posterior allows to distinguish between
different class labels of t. At the first glimpse this expression seems counter-
intuitive, since we expect those variables to dominate that are known with
higher accuracy. However, perfect knowledge of a variable does not help,
if its value suggests equal probability for different classes. Thus, although
known with less precision, a variable might dominate, if it allows better
discrimination on average. Another question is, how a variable contributes,
given that we know that the corresponding model has not generated the
time series. This renders either Ia ≡ 0 or, for the other variable, Ib ≡ 0. The
corresponding contribution in (7.3) is

∫ ∞

ρa=−∞
P (t|ρa)p(ρa)dρa,

which is equivalent to the prior probabilities for class P (t). This is an intu-
itive result, since without any knowledge of the variables we can still predict
that each class t occurs according to its prior probability.
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Similar manipulations lead to the posterior density of the latent variable
ρa.

p(ρa|Xa,Xb) =
1

C

(
P (Ia ≡ 1|Xa) (7.4)

(
P (Ib ≡ |Xb)

∑
t

[
P (t|ρa)

P (t)
p(ρa|Xa)

∫ ∞

ρb=−∞
P (t|ρb)p(ρb|Xb)dρb

]

+ P (Ib ≡ 0|Xb)
∑

t

[
P (t|ρa)

P (t)
p(ρa|Xa)

∫ ∞

ρb=−∞
P (t|ρb)p(ρb)dρb

])

+ P (Ia ≡ 0|Xa)(
P (Ib ≡ |Xb)

∑
t

[
P (t|ρa)

P (t)
p(ρa)

∫ ∞

ρb=−∞
P (t|ρb)p(ρb|Xb)dρb

]

+ P (Ib ≡ 0|Xb)
∑

t

[
P (t|ρa)

P (t)
p(ρa)

∫ ∞

ρb=−∞
P (t|ρb)p(ρb)dρb

]))

If we replace marginalization over ρb with marginalization over ρa, equation
(7.4) immediately gives the corresponding expression for the posterior density
over ρb.

Although using all information is the only consistent way of reasoning,
there is a point where our analysis will not follow this requirement. In prepro-
cessing, when we infer the posterior distribution over reflection coefficients
and the posterior probability of the model, we cannot afford to do so. If we
know t, then p(ρa|t) and p(ρb|t) provide some information about ρa and ρb,
respectively. But even if t is unknown, the links p(ρa|t) and p(ρb|t) allow
for information flow between ρa and ρb. Hence, in both situations we have
information about ρa and ρb that goes beyond the “stability prior” adopted
in chapter 4. However, the problem is that using this information, we cannot
derive any expressions analytically, as was done in preprocessing. Instead,
we would have to resort to MCMC techniques for the entire analysis includ-
ing preprocessing. Even with modern computers, this is still an intractable
procedure. Although this is an approximation, we will not loose much when
using the uniform “stability prior”. The usual settings in preprocessing will
lead to posterior densities over coefficients that, compared with the priors,
are sharply peaked around the most probable value4. In this case, using
either a uniform prior in the range [−1, 1], or, the more informative prior
provided via t, does not make a big difference.

4As can be seen from equation (4.15) in chapter 4, this is just a matter of the number
of samples used to estimate the feature values.
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As a last step, it remains to provide an abstract formulation of an infer-
ence procedure for the model coefficients. In order to make life easier, we
assume that we are given only labeled samples. A generalization to include
also unlabeled samples is provided in the next section. Conventional model
inference would condition on A = {ρa,i∀i}, B = {ρb,i∀i} and T = {ti∀i} pro-
vided as “training samples”. Denoting all model coefficients together by ϕ,
inference would lead to p(ϕ|A,B, T ). In our setting, the ρa,i’s and the ρb,i’s
are latent variables, and we cannot condition on them. Instead we would
like to condition on the corresponding Xa,i’s and Xb,i’s. Such conditioning
cannot be done directly. Assuming independence of observations allows us
to formulate a likelihood function as the product of joint densities as are
imposed by the DAG in figure 7.2. We get

p(T ,A, IA,XA,B, IB,XB|ϕ) = (7.5)

=
∏

i

p(ti, ρa,i, Ia,i,Xa,i, ρb,i, Ib,iXb,i|ϕ)

=
∏

i

P (ti|ρa,i)P (ti|ρb,i)

P (ti)
p(ρa,i|Ia,i,Xa,i)p(Ia,i|Xa,i)p(ρb,i|Ib,i,Xb,i)p(Ib,i|Xb,i)

where we have used IA = {Ia,i∀i}, XA = {Xa,i∀i}, IB = {Ib,i∀i} and XB =
{Xb,i∀i}. We get the posterior over model coefficients ϕ by multiplication
with the prior p(ϕ) and marginalizing out all ρa,i, Ia,i, ρb,i and Ib,i. This
gives

p(ϕ|T ,XA,XB) ∝ (7.6)

∝ p(ϕ)
∏

i

1

P (ti)

(
P (Ia,i ≡ 1|Xa,i)

[
P (Ib,i ≡ 1|Xb,i)

∫ ∞

ρa,i=−∞
P (ti|ρa,i)p(ρa,i|Xa,i)

∫ ∞

ρb,i=−∞
P (ti|ρb,i)p(ρb,i|Xb,i)

+ P (Ib,i ≡ 0|Xb,i)

∫ ∞

ρa,i=−∞
P (ti|ρa,i)p(ρa,i|Xa,i)

∫ ∞

ρb,i=−∞
P (ti|ρb,i)p(ρb,i)

]

+ P (Ia,i ≡ 0|Xa,i)

[
P (Ib,i ≡ 1|Xb,i)

∫ ∞

ρa,i=−∞
P (ti|ρa,i)p(ρa,i)

∫ ∞

ρb,i=−∞
P (ti|ρb,i)p(ρb,i|Xb,i)

+ P (Ib,i ≡ 0|Xb,i)

∫ ∞

ρa,i=−∞
P (ti|ρa,i)p(ρa,i)

∫ ∞

ρb,i=−∞
P (ti|ρb,i)p(ρb,i)

])
,
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where we have also made the marginal sums over Ia,i and Ib,i explicit. As we
still need to normalize, expression (7.6) is just proportional to the posterior.
In general, neither the integrals nor the normalization constants in (7.3),
(7.4) or (7.6) will be analytically tractable. In all practical problems we will
have to apply MCMC methods.

The DAG used in this section was used to illustrate that marginalizing out
variable and model uncertainties leads to predictions that are dominated by
such information that allows for reliable discrimination. As we are interested
in classification of adjacent segments of a time series, we can improve on the
DAG shown in figure 7.2, if we also allow for temporal dependencies among
class labels. In the following section we propose the simplest such model,
which exhibits a first order Markov dependency among class labels. We
propose Bayesian inference of such a model, which is done by sampling from
the joint probability density over latent variables and model coefficients.

7.3 Spatio-temporal fusion

A DAG structure that allows spatio-temporal sensor fusion is obtained by
imposing conditional dependencies among adjacent state variables and to
spatially different sensors. Sensor fusion is then achieved very naturally by
treating this DAG within the Bayesian framework. Bayesian preprocessing
will assess both model and coefficient uncertainties. Marginalizing out these
uncertainties will lead to beliefs about states that are less affected by less
reliable information. Such an approach can go even further; it allows one to
infer the expected feature values. The obtained expectations will differ from
the values obtained from preprocessing alone if the correspoinding segment
was unreliable.

7.3.1 A simple DAG structure

This subsection proposes a DAG structure that allows spatio-temporal sensor
fusion. Measured in terms of model complexity (number of free parameters),
we aim at a simple solution. Assuming that we want to solve a classification
task, we regard the class labels as the state of interest. The simplest case
will assume a first order Markov dependency among these state variables.
Furthermore, we will also assume conditional independence between all latent
variables depending on each of the state variables. Figure 7.3 shows a DAG
structure imposed by these assumptions. Training data can contain labeled
as well as unlabeled segments of a time series. We represent unobserved
states with circles and the observed states with squares. Such relations will
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be found during model inference. The structure of the DAG in figure 7.3
is similar to hidden Markov models, however, the states are only partially
hidden. For our purpose, such a partial HMM is more appropriate than an
HMM, because HMM’s are fully unsupervised. However, we have partial
knowledge about class labels and consistency arguments tell us that we must
use the labels. During prediction, all states are unknown and the model
operates similar to an ordinary HMM.

N,1X XN,k

I N,1 I N,k

X X

t2

2,1
ρ

2,k
ρ

tN

N,1
ρ

N,k
ρ

t1

1,1
ρ

1,k
ρI 1,1 I 1,k

X1,k

I 2,1 I 2,k

X2,k1,1 2,1

Figure 7.3: A directed acyclic graph for spatio-temporal sensor fusion. The
DAG assumes a first order Markov dependency among states and, condi-
tional on these, independence of the latent variables ρi,j. We use ti to denote
the unknown state variables of interest. The ρi,j are latent variables, each
representing one feature from preprocessing. Finally Xi,j denote the corre-
sponding segments of a time series, and Ii,j denote latent indicator variables
that allow us to consider model uncertainties.

We have already decided about the latent variables ρi,j and indicator
variables Ii,j. They are stages in an AR-lattice filter, and Xi,j are the cor-
responding segments of a time series. It remains to decide about the model
details between the state variables ti and the latent variables ρi,j. This part
of the model has to meet two requirements.

• The model should allow inference of model coefficients from such seg-
ments of time series Xi,j, where the corresponding state ti is unknown.

• Furthermore, model inference as well as predictions require
the estimation of the conditional probability density function,
p(ρi,j|{Xι,ζ∀ι, ζ being relevant }, ti, ti), over latent variables, ρi,j. We
will condition on all relevant information. During prediction, where
all state variables are unknown, all segments, Xι,ζ , of the entire time
series at all sensors are relevant. In this case ti and ti are the (certain)
start and end states. During model inference, relevant information is
provided by all segments Xι,ζ between the observed states that form
the DAG and the states at these time instances.
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Both requirements are met if we use a generative model (i.e. we model
the probability density functions p(ρi,j|ti).). In our case the ρi,j’s are contin-
uous variables and the generative model will be implemented as a mixture
of normals

p(ρi,j|ti) =
D∑

d=1

P (d|ti)p(ρi,j|Θd), (7.7)

where P (d|ti) are the prior allocation probabilities of mixture component d
conditional on state ti and Θd are all coefficients of the d-th component. As
the model is fixed, we carry on with the usual approach in a Bayesian anal-
ysis. We use an MCMC method which requires us to formulate a likelihood
function, design a DAG that shows the relations during inference, specify con-
venient priors and, as a final step, formulate updates for an MCMC scheme.

7.3.2 A likelihood function for sequence models

As already mentioned, we are interested in a fully Bayesian treatment of the
model. This can be done as soon as we are able to formulate a normalized
likelihood function and priors. We are dealing with a sequence model, where
the likelihood is usually (see [BB98], pp. 150) formulated via paths that are
possible sequences of latent states

P (D, Π|ϕ) = P (t1)
∏

j

p(ρ1,j|t1)
N∏

i=2

(
P (ti|ti−1)

∏
j

p(ρi,j|ti)
)

. (7.8)

In (7.8) we use D to denote a realization of all latent variables ρi,j and Π
to denote a state sequence (path) that could have generated D. Contrary to
conventional HMM’s, where all states are hidden, in our case not all paths are
possible. Each path in (7.8) has to visit all observed states and the likelihood
function that applies in the case of a partial HMM has to marginalize over
all these possible paths Π only. We formulate

P (D, T |ϕ) =
∑
Π

P (t1)
∏

j

p(ρ1,j|t1)
∏

i=2N

(
P (ti|ti−1)

∏
j

p(ρi,j|ti)
)

, (7.9)

where T denotes the observed states. If several independent sequences are
used to infer model coefficients, the overall likelihood is the product of several
expressions like (7.9). In order to obtain a final expression of the likelihood
of model coefficients we have to plug (7.7) into (7.9). It is evident that
the resulting likelihood is highly nonlinear and parameter inference had to
be done by carrying out Metropolis-Hastings updates. The conventional
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way to maximize likelihood functions like (7.9) is to apply the expectation
maximization (EM) algorithm [DLR77], which was introduced for HMMs in
[BPSW70]. The sampling algorithm proposed in the next subsection uses
similar ideas. We use both Gibbs updates and Metropolis-Hastings updates
to draw samples from the posterior distribution over model coefficients and
latent variables.

7.3.3 An augmented DAG for MCMC sampling

The likelihood function associated with the probabilistic model in figure 7.3 is
non-quadratic in the model coefficients and we have to use MCMC methods
to infer them. As already indicated, we want to use Gibbs updates wherever
possible. Only such variables that do not allow Gibbs moves will be updated
with Metropolis-Hastings steps. Following the ideas of the EM procedure, we
introduce latent variables, di,j, which indicate the kernel number the latent
variables ρi,j were generated from.

Figure 7.4 shows a DAG that results from the DAG in figure 7.3 when
augmenting it with these latent allocation variables. Furthermore, the DAG
in figure 7.4 contains all coefficients of the probabilistic model and the hyper-
parameters of the corresponding priors. In order to keep the graph simple,
figure 7.4 displays only one state variable. We also restrict the DAG to one
latent variable, the others are indicated by dots.

The state variable ti is either conditionally dependent on the prior prob-
abilities of states, P , or it depends on the transition probability T ti−1

. The
former is true for state t1 only, the latter is true for all other states. For both
the transition probabilities, T ti−1

, and prior allocation probabilities, W ti,j
,

we use a hierarchical Dirichlet-multinomial prior. This has the advantage of
allowing for informative priors without introducing too much sensitivity. The
price we pay is that both δT and δW must be sampled with single component
Metropolis-Hastings updates. Both T ti−1

and W ti,j
are conditional on the

state at particular time instances. In order to emphasize that inference of
the coefficient values is independent of these time instances, we will use k to
represent a state whenever inferring one of these variables.

The next part of the DAG, that is, the observation model of the latent
variables ρi,j, is largely identical to the model we used in chapters 5 and 6.
A similar DAG was also used by [RG97] for their one dimensional mixture
of Gaussians analysis with varying number of kernels. We use an a-priori
fixed number of kernels here. The component means, µj,d, get a normal
prior with mean ξj and variance κ−1

j . Each component has its own precision

(inverse variance) σ−2
j,d . In order to avoid problems with singular solutions the

variances are coupled with hyper-parameters α and βj. The latter, βj, has
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Figure 7.4: This figure shows the DAG underlying Gibbs sampling. In order
to keep it simple, the DAG shows only one state variable ti and only one
of the latent variables ρi,j. The other variables are indicated by three dots.
The dotted connection between the prior probability of states, P , and ti and
the connection between the transition probability T ti−1

and ti are mutually
exclusive. For the first state, t1, the dotted connection is present, for all
other states it is absent. As usual, square nodes denote observed quantities
and circles are latent variables. However there are two exceptions: some of
the ti’s as well as the Xi,j’s are observed. A more detailed description can be
found in the text.
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itself a Gamma prior. This hierarchical prior specification allows again for
informative priors without introducing large dependencies on the values of the
hyper-parameters. The difference of our observation model to the one used in
[RG97] is that the ρi,j are latent variables. Both the model indicator Ii,j and
the corresponding segments of time series Xi,j are conditionally dependent
on ρi,j.

7.3.4 A specification of priors

In order to be able to derive an MCMC scheme for sampling from the poste-
rior distributions of model coefficients and latent variables, we need to spec-
ify the functional form, as well as parameters, of all priors from the DAG
in figure 7.4. Gibbs sampling requires full conditional distributions that can
be sampled from. The full conditional distributions are the distributions of
model coefficients when conditioning on all other model coefficients, latent
variables and data. Apart from the EM-like idea to introduce latent vari-
ables, tractable distributions will be obtained when using so-called conjugate
priors, as discussed in [BS94].

In order to allow Gibbs updates for most of the parameters, we use the
following prior specification:

• Each component mean, µj,d, is given a Gaussian prior:
µj,d ∼ N1(ξj, κ

−1
j ).

• The inverse variance is given a Gamma prior: σ−2
j,d ∼ Γ(α, βj).

• The hyper-parameter, βj, gets a Gamma hyper-prior: βj ∼ Γ(g, h).

• The mixing coefficients, W k, get a Dirichlet prior:
W k ∼ D(δ1

Wk
, ..., δD

Wti
), with D denoting the number of kernels.

• The prior allocation counts, δWk
, get a multinomial prior:

δWk
∼ Mn(nW , PW ), with k ∈ {1, ..., K} denoting a possible state

between 1 and the number of states, K.

• The transition probabilities, T k, get a Dirichlet prior as well:
T k ∼ D(δ1

Tk
, ..., δK

Tk
)

• The prior transition counts, δTk
, get a multinomial prior:

δTk
∼Mn(nT , P T ).

The quantitative settings are similar to those used in [RG97]. Values for
α are between 1 and 2, g is usually between 0.2 and 1 and h is typically
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between 1/R2
max and 10/R2

max, with Rmax denoting the largest input range.
The mean, µj, gets a Gaussian prior centered at the midpoint, ξj, with inverse
variance κj = 1/R2

j , where Rj is the range of the j-th input. The multinomial
priors of the prior allocation counts and the prior transition counts are set up
with equal probabilities for all counters. We set the number of preallocated
samples, nW , between 10 and 50 and nT between 50 and 100. The larger
nW , the more certain we are that the samples from a particular class are
distributed equally among the different Gaussian kernels. Increasing nT leads
to smaller differences among transition probabilities. This corresponds to a
temporal smoothness assumption. The attentive reader might be surprised
that neither the DAG in figure 7.4 nor the prior specification in this section
contain any prior counts for the prior state probabilities P . The reason why
we do not need any prior counts for these probabilities is because we do not
infer them directly. As is shown below, assuming ergodicity of the Markov
chain5, P is directly specified by the estimates of the transition probabilities
T .

7.3.5 MCMC updates of coefficients and latent vari-
ables

The prior specification proposed in the last subsection enables us to use
mainly Gibbs updates. However, some of the variables need to be sampled
via Metropolis-Hastings updates. The resulting sampling scheme is a single
component MCMC sampler. The main difficulty is that we regard “input”
variables as being latent. In other words, conventional approaches condition
on the ρi,j’s, whereas our approach regards them as random variables which
have to be updated as well.

The single component sampler uses updates from the full conditional
distributions in (7.10). We use Θj,d to denote the parameters of the d-th
Gaussian and j-th latent variable. The sample index is i and ti are the
(partially) unobserved states. Of course we update only unobserved state
variables. The full conditional distribution of the (latent) kernel allocations,
di,j, depends on the prior allocation probabilities, W ti

, and on the latent
variables ρi,j. After having obtained latent states and kernel allocations we
are able to update the model coefficients. Several counters are needed: ldk,j is
the number of ρi,j’s allocated by the d-th component and state k; mk are the
number of transitions from state k to state i; finally we use nd,j as counter
for all ρi,j’s allocated to the d-th kernel and ād,j as the corresponding sample

5The terminology at this stage is somewhat confusing: here we refer to the Markov
chain in the model.
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mean. During updates of the ρi,j’s, we use ρ̂
Xi,j

i,j to denote the most probable

value of ρi,j conditional on Xi,j and (σ
Xi,j

i,j )2 as corresponding variance. These
estimates, as well as P (Ii,j|Xi,j), are obtained from Bayesian preprocessing.

P (t1|...) =
P t1

T t2,t1

∏
j p(ρ1,j|t1)∑

t1
P t1

T t2,t1

∏
j p(ρ1,j|t1) (7.10)

P (ti6=1|...) =
T ti,ti−1

T ti+1,ti

∏
j p(ρi,j|t1)∑

ti
T ti,ti−1

T ti+1,ti

∏
j p(ρi,j|t1)

ti ∼ Mn(1, {P (ti|...)∀ti})
P (di,j|...) =

W ti,j,d
p(ρi,j|Θj,d)∑

d W ti,j,d
p(ρi,j|Θj,d)

di,j ∼ Mn(1, {P (di,j|...)∀di,j})
W k,j ∼ D(δ1

Wk,j
+ l1k,j, ..., δ

K
Wk,j

+ lDk,j)

δWk,j
∼

D∏

d=1

(
P d

W W d
k,j

)δd
Wk,j

δd
Wk,j

!(δd
Wk,j

− 1)!

T k ∼ D(δ1
Tk

+ m1
k, ..., δ

1
Tk

+ mK
k )

δTk
∼

K∏
i=1

(P i
T T i

k)
δi
tk

δi
tk

!(δi
tk
− 1)!

µd,j ∼ N ((nd,jσ
−2
d,j + κj)

−1(nd,jσ
−2
d,j ād,j + κjξj), (nd,jσ

−2
d,j + κj)

−1)

σ−2
d,j ∼ Γ(α +

nd,j

2
, βj +

1

2

∑

ρi,j∀idi=d

(ρi,j − µd,j)
2)

βj ∼ Γ(g + Dα, h +
∑

d

σ−2
d,j )

Ii,j ∼ P (Ii,j|Xi,j)

ρi,j ∼
{
∀Ii,j ≡ 1 : P (ti|ρi,j)N (ρi,j; ρ̂

Xi,j

i,j , (σ
Xi,j

i,j )2)

∀Ii,j ≡ 0 : p(ρi,j|ti)

Except for δWk,j
, δTk

and ρi,j all variables in (7.10) can be sampled from.
Details on how to generate random numbers from all necessary distribu-
tions can be found in [Rip87]. The exceptions can be updated using single
component Metropolis-Hastings steps. For δWk,j

and δTk
, we use the same

Metropolis-Hastings scheme, which needs to be discussed only for δWk,j
. We

propose a modified δ′Wk,j
= δWk,j

+ ∆ with ∆ constructed in a way that
the sum over all prior counts remains equal to nW . The move is accepted
according to the ratio r = p(δ′Wk,j

|...)/p(δWk,j
|...), with the full conditional
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distributions being equal to the corresponding right side in (7.10). The sit-
uation with ρi,j is slightly more difficult as it requires a hierarchical scheme
with two independent sets of observations of ρi,j. The first set is updated by

drawing from P (ti|ρi,j)N (ρi,j; ρ̂
Xi,j

i,j , (σ
Xi,j

i,j )2). We draw new samples from the
Gaussian and compare the acceptance ratios r = P (ti|ρ′i,j)/P (ti|ρi,j). In a
second step, we generate the observations of the ρi,j that will be used in the
next round of the sampler. All observations where Ii,j ≡ 1 are taken from
the first set. If Ii,j ≡ 0, the ρi,j’s are conditional on ti and Ii,j and due to the
uniform prior used in preprocessing, we have to sample from p(ρi,j|ti).

As already mentioned in the last section, under some conditions, the
prior probabilities of states, P , can be obtained directly from the transition
probabilities, T . Assuming a stationary Markov chain, we get:

P i+1 = TP i. (7.11)

Linear algebra tells us that (7.11) is true if and only if P is equal to the
eigenvector of T corresponding to the eigenvalue 1 that must exist. Hence we
obtain P from T as (normalized) eigenvector corresponding to the eigenvalue
1.

The entire MCMC scheme starts by drawing initial model parameters
from their priors. We initialize the ρi,j’s with samples drawn from the poste-

rior found in preprocessing, N (ρi,j; ρ̂
Xi,j

i,j , (σ
Xi,j

i,j )2), and all unobserved states
ti with samples drawn from the prior probabilities P (ti). In order to allow
the Markov chain to converge, we draw several thousand samples from the
posterior. The first half is usually regarded as burn in and not used for
predictions.

7.3.6 Sensor fusion during predictions

In order to get consistent estimates of beliefs of states, predictions have to
be marginalized over ρi,j and Ii,j, as well. The integrals need to be solved
numerically. We use all samples drawn from the posterior in order to allow
the ρi,j’s of the test data to converge. All sample expectations are then taken
after allowing for a burn in period. Apart from beliefs about states, we can
also obtain expectations from all latent variables most interestingly from the
ρi,j’s.

Predictions are based on an approximation of the posterior distribution of
states, ti, latent allocations, di,j, and latent variables, ρi,j. We initialize the
states ti by a sample drawn from the first estimate of the prior probabilities P .
The initial ρi,j’s are drawn from the normal distributionN (ρi,j; ρ̂

Xi,j

i,j , (σ
Xi,j

i,j )2),
the coefficients of which were obtained by preprocessing. The coefficients are
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then updated using full conditional distributions for ti, di,j and ρi,j, which
are identical to those formulated in (7.10). During each round of the sampler,
we use the next sample from the Markov chain obtained during parameter
inference. We are interested in obtaining the expected values of state proba-
bilities and latent variables ρi,j. These are estimated as sample averages by
summing over all values obtained after having allowed for a burn in period.

7.4 Experiments

The algorithm proposed in this section should improve classification if the
time series to be classified is contaminated with white noise. In order to
demonstrate that the proposed algorithm will improve results in such sit-
uations, we performed an experiment where a synthetic time series had to
be classified. We also apply the algorithm to a real time series classifica-
tion problem, where we interpret all night EEG recordings in the light of
a 3-process model. We predict probabilities for 3 Rechtschaffen and Kales
stages wake, REM and delta sleep (combined stages 3 and 4). Some of the
recordings used as independent test cases contain artifact segments of differ-
ent durations ranging form 1 up to 10 seconds length. Although not marked
as artifacts in the routine scorings, consultations with clinical experts lead to
the conclusion that these observations are clearly not physiologically plausi-
ble. Comparing the probabilities assigned to the lattice filter stages, when
compared against a white noise explanation, reveals that the segments are
white noise sequences. In particular we are interested in the behaviour of our
algorithm when such segments appear within epochs of deep sleep. Classi-
cal approaches that condition on best estimates will predict stage wake with
high probability. On the contrary we expect that the probabilities predicted
with the suggested approach will ignore these artifact segments and instead
rely on the information obtained from other sensors and from different time
instances.

7.4.1 Classification of synthetic time series

In order to see whether integrating out all preprocessing uncertainty im-
proves results of time series classification, we prepared a data set generated
with two synthetic third-order AR models. The poles of the transfer func-
tion of the process generator have been set to (0.9;−0.5 + j0.5;−0.5− j0.5)
and (−0.9; 0.5 + j0.5; 0.5 − j0.5). As long as the time series was generated
according to the first model, we give label 0. As soon as the time series is
generated from the second model it is labeled 1.
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The label sequence was obtained from a first order Markov model with
the following transition probabilities:

• P (ti+1 = 0|ti = 0) = 0.95.

• P (ti+1 = 1|ti = 0) = 0.05.

• P (ti+1 = 0|ti = 1) = 0.05.

• P (ti+1 = 1|ti = 1) = 0.95.

According to these transition probabilities, we generated a sequence of length
1000 that is used for model inference. Each label corresponds to a segment of
100 samples of a time series generated from the corresponding AR-process.
A short sequence of the time series and labels is shown in figure 7.5.

2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

Sequence of labels

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−5

0

5
Corresponding synthetic time series (AR process)

Figure 7.5: Labels and time series used in the synthetic experiment.

Using equations (4.14), (4.15) and (4.18) defined in chapter 4 , we ex-
tracted 3 reflection coefficients, the corresponding variances and model prob-
abilities. Preprocessing was done with a 100-sample non-overlapping window.
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The training sequence used to parameterize the model proposed above con-
tained 1000 such inputs and the corresponding labels. Model inference is
based on the MCMC updates formulated in (7.10) in subsection 7.3.5. We
use only labeled data and draw 2000 samples from the posterior. The same
data was used to train a generative classifier as proposed in chapter 6. This
algorithm uses the most probable feature values only and serves as reference
method.

In order to test the hypothesis that integrating out feature and model
uncertainty will lead to better predictions, we took a test set with 4000
samples that was generated as described above. A fraction of segments was
replaced with white noise. We used a firs- order Markov sequence with a
probability for replacement of Pr = 0.15 to decide whether or not a particular
segment of the clean time series is replaced with white noise. This ensures
that we will have situations of different complexity. The length of the white
noise segment as well as the position with respect to the switching times in
the clean time series will vary. A short segment of the resulting time series is
shown in figure 7.6, together with the original labels and an indicator where
the contamination took place.

As was done for the training data, we extracted 3 reflection coefficients
with the method proposed in chapter 4. The plots in figure 7.7 show the
model probabilities in the third lattice filter stage before and after contami-
nation.

A sequence of 500 predictions obtained from the generative classifier that
uses most probable feature estimates is shown in figure 7.8. The trace of the
probabilities obtained from noisy data contains many deviations from the
probabilities obtained with clean data. It is interesting to see that the wrong
predictions are obtained with rather high probabilities.

Predicting with the integrating approach proposed in this section requires
to sample from the posterior distribution over latent feature variables and
unobserved class labels. As described in subsection 7.3.6, we must allow for
convergence of the Markov chain also during predictions. We start therefore
simulating with the first sample obtained during model fitting. However, all
expectations are only taken after allowing for the usual burn in period (1000
samples in this experiment). The probabilities predicted by our approach are
shown in figure 7.9. Many of the misclassifications made by the the conven-
tional approach can be corrected. Furthermore we see that the probabilities
for classes are moderated when predicted from contaminated segments (e.g.
in figure 7.9 close to sample 250).

In order to make the comparison of the classifications obtained from both
methods for the contaminated time series easier, we show both probabilities
together with the true labels in figure 7.10. We can see that integrating out
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Figure 7.6: “True” labels and contaminated time series used as test data. The
third trace in this figure shows where the original data have been replaced
with white noise.

uncertainties leads to probabilities that are much less certain about class label
when compared with the probabilities obtained from a conventional classifier.
As soon as we condition on the feature values, we get wrong classifications
that are made with rather high confidence.

The results of this experiment have also been analyzed quantitatively. For
this purpose we have used all 4000 test cases. As can be seen in figure 7.9
there are some samples of clean data that are misclassified. Hence it seems
advisable to investigate the behaviour of the proposed method using both
clean and contaminated data.

We find that the proposed method misclassifies 8 of 4000 samples, which
corresponds to a generalization performance of 99.8%. At the same time the
alternative method has no problem in classifying all samples correctly. Hence
the differences between both classifiers are determined by: na = 8, where na

is the number of errors made by the integrating HMM classifier that were
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Figure 7.7: Bayesian model probabilities for the third lattice filter stage
obtained from clean (upper plot) and contaminated (lower plot) input data.

not made by the conventional classifier; and nb = 0, where nb denotes the
number of mistakes made by the conventional classifier that were not made
by the integrating HMM. Under a Binomial distribution, this difference is
significant at a threshold of 0.01. The probability observing the result by
chance if both methods are equal is P = 0.0039. Although we do no think
that a difference in generalization accuracy of 0.2% is interesting, we have
further investigated where the integrating HMM had problems classifying
the label correctly. We realized that this may happen when a state appears
in the the test sequence for only one time instance. Note that such a state
has rather low prior probability under the transition probabilities used to
generate the time series.

When classifying the contaminated time series the integrating HMM
achieves a generalization accuracy of 96.3%, which compares to 92.4%
reached by the conventional classifier. This equals to na = 36 and nb = 192,
which is highly significant. The probability of observing this result if both
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Figure 7.8: This figure shows traces of the probabilities for class 2 predicted
by a conventional method using clean and noisy data as well as the true
labels.

methods are actually equal is P = 3.1710−23.
Since we use a generative model, we can also provide an expectation of

feature values. Using the third reflection coefficient as an example, the plots
in figure 7.11 show the difference between estimates calculated from clean and
noisy data and the difference between the expectations in latent space and the
estimates obtained from clean data. Compared with the estimates from the
contaminated time series, the expectations in latent space are indeed closer
to the estimates obtained from the uncontaminated time series. Hence we
may not only improve predictions, we may even provide better estimates for
the input features. However that is not always true: the difference between
the expected latent values and the estimates obtained on clean data might
even increase when the contamination is close to a change-point in the time
series. An example may be seen in figure 7.11 close to sample 400.

We have analyzed the relations in latent space quantitatively by consider-
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Figure 7.9: This figure shows probability plots for class 2 obtained by inte-
grating out feature and model uncertainty for clean as well as noisy data.
Note that the predictions obtained from “clean” data misclassify the 2 sam-
ples that are from a single switch to class 2.

ing the sum of squares of the observed differences. On one hand, we have the
difference between the best feature estimates extracted from clean data and
the expected value obtained from contaminated data. On the other hand,
there is the difference between the best estimates extracted from clean and
contaminated data. The results are reported in table 7.1. We see that for
both the second and third reflection coefficient the expected latent value is
closer than the best estimates from contaminated data. However for the first
reflection coefficient, the best estimate from contaminated data is closer. The
reason for this discrepancy is that when extracted from clean data, the model
probability of the first reflection coefficient is often rather small whereas both
the second and third coefficient usually have rather high probabilities.
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Figure 7.10: For easier comparison this figure shows the true labels and the
probabilities obtained by both methods for the contaminated data. We see
that the proposed method reduces the number of mistakes and that in general
the probabilities obtained from contaminated data are less certain about the
class label.

Table 7.1: Sum of squared differences at feature level

cf. 1 cf. 2 cf. 3∑
k(ρ̂clean− < ρnoise >)2 1298.0 1888.6 487.9∑

k(ρ̂clean − ρ̂noise)
2 923.8 7056.5 650.7
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Figure 7.11: In this figure we see plots showing the difference between feature
estimates from clean and noisy data and the difference between the feature
estimated from clean data and the expectation obtained by marginalization.
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7.4.2 Results using sleep EEG

In a second experiment, we used the same all night EEG recordings that
were already used in chapter 6. That is, we used data recorded at electrodes
C3, O1, C4 and O2. The raw EEG was preprocessed using the lattice filter
model that was proposed in chapter 4. As we already did in chapter 6,
we predict probabilities for Rechtschaffen and Kales labels wake, REM and
stage 4. The remaining epochs are added to the training data without labels.
Model inference was performed with the same 6 recordings that were already
used in chapter 6. Following the arguments laid out in chaper 6, we reduced
the number of training samples by extracting the median feature vector from
each labeled (30 seconds) epoch. This reduction of training samples was
again motivated to reduce the time for model inference. Model inference was
done by drawing 2000 samples according to the full conditionals formulated
in equation (7.10).

The inferred model was then applied to 6 independent recordings by us-
ing the scheme described in subsection 7.3.6. For predictions, we had to
calculate the expectations of the latent feature estimates. These expecta-
tions were obtained from a sampled Markov Chain, which had to converge as
well. Therefore we started simulating with the first sample from the Markov
Chain that was obtained during model inference. All predictions of latent
variables and state probabilities are then obtained by taking expectations
after allowing the first 1000 samples as burn in.

In principle, we observed similar results as were reported in chapter 6.
That is, for some recordings we found that the predicted probabilities corre-
spond to the consensus scoring obtained by a human expert. However, for a
majority of the 6 recordings that were used in this test we observed problems
with REM non-REM separation. The results from one recording, where the
probability plots give a similar impression as does the consensus hypnogram,
is shown in figure 7.12. The probability traces shown in figure 7.13 are from
a recording where the analysis failed. As was argued in chapter 6, this failure
is most probably due to the low quality of the recording.

In order to obtain quantitative results, we compared the generalization
accuracy for predicting wake, REM sleep and delta sleep. The labels obtained
from thresholding the probabilities were compared against the Rechtschaffen
and Kales labels wake, REM and combined stage 3 and 4 from the consensus
scorings. The thresholds used for predicting these labels from the probabil-
ity plots were obtined by the same ROC analysis that was used in chapter
6. The results obtained from this comparison are summarized in table 7.2.
Compared with the generalization accuracies that were obtained with a con-
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ventional classifier6, the proposed architecture performed worse. The most
obvious reason for this lower generalization accuracy is the HMM-like archi-
tecture that was used. The probabilities predicted for a segment will depend
on the states of neighbouring segments. That is, if a segment shows high
probabilities for either wake, REM or delta sleep, the same state will have
a high prior probability in both the preceeding and adjacent segment. This
will lead to larger probabilites in general, and the method will be more sen-
sitive for all three events. We see this by comparing the sensitivities and
specificities reported in table 7.2 with those reported in table 6.4.

Table 7.2: Comparison with expert scorings

subj. 1 subj. 2 subj. 3 subj. 4 subj. 5 subj. 6
spc. wake (%) 39.5 1.7 19.6 13.9 37.7 1.5
spc. REM (%) 87.4 4.2 44.5 80 52.8 0

spc. S3 & S4 (%) 78.4 70.3 24.0 64.7 46.5 11.4
sns. wake (%) 95.6 99.8 97.7 99.8 99.2 99.8
sns. REM (%) 96.2 97.2 94.5 55.2 71.9 99.3

sns. S3 & S4 (%) 91.5 91.0 91.0 99.8 99.3 97.0
acc. machine (%) 77.4 63.1 64.0 38.8 49.4 60.4
acc. rater 1 (%) 44.8 93.2 95.4 92.5 92.5 92.2
acc. rater 2 (%) 91.8 94.1 92 92.9 91.0 96.3

6These results are found in table 6.4
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Figure 7.12: This figure shows probabilities for wake, REM and deep sleep.
The corresponding Rechtschaffen and Kales consenus hypnogram is shown
below. The x-axis shows the time in seconds starting with the beginning of
the recording. We see that the agreement between the expert scoring and
the auomatic analysis with respect to REM is reasonably good. However,
the sensitivity for wake and delta sleep is too large.



CHAPTER 7. BAYESIAN SENSOR FUSION 136

0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

Probabilities for wake
P

(w
ak

e)

0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

REM cycle

P
(R

E
M

)

0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

Delta cycle

P
(S

−
4)

0.5 1 1.5 2 2.5

x 10
4

stage 4  
stage 3  
stage  2 
stage  1 
wake     
rem      

movement 

uncl.    
Manual Hypnogram

Figure 7.13: This figure shows probabilities for wake, REM and deep sleep.
The corresponding Rechtschaffen and Kales consenus hypnogram is shown
below. The x-axis shows the time in seconds starting with the beginning of
the recording. The bad correlation between the probability plots and the
Rechtschaffen and Kales stages is most probably caused by the low quality
of the recording.
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Our final interest is to get an impression how the method handles inputs
that have been found to be unreliable. As was explained above, the reliability
of an input is measured by the variance of the estimate and the probability
of the corresponding lattice filter stage. In figure 7.14 we see a plot of 120
seconds length that allows to compare the probability plots for stage wake,
REM and delta sleep obtained from integrating out uncertainty with plots
that were obtained by conventional conditioning. The plot below shows the
probability of the first reflection coefficient. We see clearly that the proba-
bilities obtained from integrating out feature uncertainty do not depend on
uncertain information. The probabilities obtained from the conventional ap-
proach rely on all features. This manifests itself in increased probabilities for
wake caused by unreliable features.

The differences between the probability estimates shown in figure 7.14 are
caused by differences between feature estimates obtained from preprocessing
and the expectations obtained by integrating out feature and model uncer-
tainties. Such differences between feature estimates are illustrated in figure
7.15. The plots represent a segment of 5 minutes of EEG, where a large part
of the information at the beginning and at the end is missing. Such missing
inputs are caused by overflows in the analog digital converters. Another pos-
sible reason for missing inputs is that the electrodes were clamped to ground
when the subject had to go to the bathroom. During preprocesing, missing
information is set to “not a number” (nan). In order to allow predictions, we
treat such missing inputs by setting the corresponding model probabilities to
0. The upper traces in figure 7.15 show plots of the model probabilities, the
variances and the feature itself. Note the missing inputs in the variance and
feature estimates. The two traces below show the expectations obtained from
integrating out uncertainty and the differences between the expectations and
the values obtained from preprocessing. The feature values are reconstructed
(or changed) using information obtained form other sensors and from past
and future estimates.

7.5 Summary

We reported in this chapter about a method of optimal integration between
preprocessing and estimation of probabilities. The proposed method is opti-
mal in a Bayesian sense, because all uncertainties are treated by marginal-
ization. An experiment with synthetic data showed that the method will
improve results, when the original data is contaminated with white noise ar-
tifacts. Compared with a conventional classifier the results improved from a
generalization accuracy of 92.4% to 96.3%. This difference is highly signifi-
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cant.
The results obtained for sleep analysis are less satisfying. Although the

method improves the probability estimates of unreliable segments, the over-
all generalization accuracy is significantly below the accuracy reported in
chapter 6. An explanation for the low generalization accuracy is the Markov
dependency among class lables as is assumed by the model. Every segment
that shows a high probability for wake, REM or delta sleep will introduce
a high prior probability for the same event in both neighbouring segments.
Thus we will in general observe large probabilities. An idea that could help in
this particular case would be to infer the model using a strong prior for equal
transition probabilities. We could also drop the conditional dependency ac-
cross time completely. However, this would mean to reduce to spatial sensor
fusion only.
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Figure 7.14: This figure shows the probabilities for stage wake, REM and
delta sleep, for a segment of 120 seconds length. At the top we see plots
obtained by integrating out feature and model uncertainty. Below we see
the same plots obtained from conditioning on best estimates. The last trace
shows the corresponding probabilities of the corresponding lattice filter stage.
The probabilities obtained by conditioning are more affected by low reliable
information. Low reliable features are classified as wake.
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Figure 7.15: The plots in this figure represent 5 minutes of data. The plots
show the estimates from preprocessing (model probabilities, variances and
feature values), the expectations of the latent feature variables and the dif-
ferences between the estimates from preprocessing and the expected values.
A large part of information at the beginning and at the end of the plot is
missing. The corresponding values are reconstructed from other sensors and
from past and futre estimates.



Chapter 8

Discussion

This final chapter provides a summary of the methods developed in this
thesis. The main contribution has been an investigation of how Bayesian
methods can be used to increase the reliability of decisions. The application
that served as a major example was classification of all night sleep EEG
reordings. The Bayesian methodology was used to derive optimal algorithms
for preprocessing, feature subset selection1, static classification and sensor
fusion.

We have argued that one requirement to obtain reliable decisions is an
appropriately chosen model. In the Bayesian framework we treat model
selection by calculating the probabilities of different models. In chapter 4 we
derived the probabilities of lattice filter stages as opposed to a white noise
explanation of the observed data. These probabilities were used to obtain the
optimal order of AR-processes. If white noise is considered as an artefact, we
may also use this probability as reliability measure of a lattice filter stage.
Based on this measure we developed a Bayesian method for sensor fusion in
chapter 7.

Model selection was also dealt with in chapter 6, where we derived the
probabilities of classifiers with different model orders. Another example for
model selection was presented in chapter 5, where we determined the proba-
bilities of different feature subsets in several classification tasks. In all three
cases we found models with reasonably chosen complexity. In chapter 6, this
was a mandatory requirement. One of the requirements for the SIESTA an-
alyzer was to allow for obtaining information that goes beyond probabilities
for classes. The clinical experts involved in the SIESTA project wanted to
have means to analyze the model structure. Obviously, this information is
only meaningful for an appropriately chosen model.

1Feature subset selection is the usual terminology, correctly speaking the proposd tech-
nique integrates out subset uncertainty.

141
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The seond requirement that has been found to be important to achieve
reliable decisions is to integrate out all kinds of uncertainties involved. We
have developed such a technique in chapter 5, where the predicted proba-
bilities result from integrating over the parameter posteriors and summing
over different feature subsets according to their probability. Viewed in that
perspective, the predictions obtained for the generative classifier that was
proposed in chapter 6 are somewhat suboptimal. We integrate over the pos-
terior in parameter space, but we condition on the most probable model.
Although conditioning is not optimal, we found only one dominating model
in most experiments .

In situations with large amount of data, limited computational resources
prevent us from applying interesting models directly to the data. An ex-
ample of this sort are the all night sleep EEG recordings used in the thesis.
Usually such problems are approached by separating the analysis in a pre-
processing stage and in a classification stage. A conventional architecture
would condition on the feature estimates obtained from preprocessing. This
way of solving the problem neglects the uncertanty in preprocessing and it
violates the assumptions underlying the Bayesian paradigm. An algorithm
that avoids such suboptimality was proposed in chapter 7. The method
resolves the problem by using one probability distribution over the entire
model. Predictions are obtained from the margial distribution after integrat-
ing over all unobserved variables including preprocessed features. Compared
with classical approaches, the proposed method has several advantages:

• From a Bayesian point of view, the method results in optimal decisions.

• We demonstrated for both a synthetic problem and the analysis of all
night sleep EEG that the predicted probabilities are less affected by
unreliable information.

The generalization accuracy in the sleep analysis experiment was never-
theless significantly below the accuracy reached by the static classifier that
was proposed in chapter 6. The reason for this effect is the way by which
we decided to approach sleep analysis. According to the decisions taken
in the SIESTA project, we used labels for the extrem states wake, REM
and deep sleep. The predictions for all data from between these extreme
events depend on a-priori assumptions about spatial smoothness. The prob-
ability functions obtained from static classification will in general be much
smoother compared with those obtained from dynamic classification as was
used in chapter 7. Hence we could either use a very strong prior for equal
transition probabilities, or we could drop the conditional dependency over
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time completely. The latter would mean to reduce to spatial sensor fusion
only.

The final conclusion from the analysis reported in this thesis is that, once
we decide for the Bayesian way, we should do the entire analysis within this
framework. In particular, we expect that the reliability of all decisions will
increase, if we put all unknown quantities into one probabilistic model, and
predict from the marginal distributions. In terms of computational cost, this
is still a quite demanding attempt. However, we should not take this as an
argument for relying on suboptimal techniques. Since the computer power
increases every year by at least a factor of 2, the resulting algorithms will
soon be tractable on usual PC’s.
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